

P.6 LESSON NOTES FOR MATHEMATICS

TOPICAL BREAKDOWN FOR TERM I

Theme	Торіс	Sub topic		
Sets	Sets	 Types of sets 		
	concepts	- Disjoint sets		
		- Equivalent sets		
		- Non equivalent sets		
		- Equal sets		
		- Union sets		
		- Un equal sets		
		- Matching sets		
		- Intersection sets		
		- Joint sets		
		Complement of sets		
		Difference of sets		
		Sub sets		
		- Listing proper sub sets and		
		improper subsets		

		 Finding the number of sub sets Application of subsets (finding number of members in a set whose subsets are given Representing elements on a Venn diagram Venn diagram Describing and shading regions of a Venn diagram Representing members on Venn diagram Venn diagrams showing number of members in the sets Application of the set concept Probability 		
Numeracy	Whole	Place values up to millions		
	numbers	 values of digits up to millions Expanding numbers 		

		- Place value form	- Even and odd numbers
			Whole and natural numbers
		- nowers of ten (exponents)	- Counting numbers
		Writing numbers in words	- Triangular numbers
		Writing numbers in figures	- Square numbers
		Decimal fractions	- Prime numbers
			- Composite numbers
			Number patterns
		Expanding docimal fractions	Consecutive numbers
			- Counting
		Writing in fource	- Even
		Writing in ligures Dounding off desimple	- Odd
		Rounding off decimals Demon numbers up to M	Factors of a number
		Roman numbers up to M	- Common factors
			- Greatest / highest common
		Analication of Poman numbers	factor
Numoraov	Operation on	Addition of whole numbers with	Prime factorization
Numeracy	whole	Addition of whole numbers with or without regrouping	- Finding unknown prime number
	numbers	Addition of whole numbers	- Finding GCF and LCM using
	nambers	involving word problems	prime factors on venn diagrams
		Subtracting whole numbers with	Application of GCF
		or without regrouping	Multiples of numbers
		Multiplication of whole numbers	Common multiples and LCM
		involving word problems	Application of LCM
		Division of whole numbers by 2	Finding square of numbers
		digit numbers with or without	Finding square root of numbers
		remainders	Application of square and
		Division involving word	square roots of numbers
		problems	Forming number patterns
		Mixed operation on whole	
		numbers	
		Mixed operation involving word	
		problems	
		Properties of numbers	
	Pattern and	Divisibility tests of	
	sequences	2,3,4,5,6,8,9,10	
		Types of numbers	

REMARKS

The pupils will attempt exercise 1 : 1 page 2 from A new MK primary MTC pupils' BK 6. / Mk new edition pg 1-2 / understanding mtc pg 1-3/ fountain pf 1-8

ACTIVITY

$$\varepsilon = \{a, b, c, e, d, f, g, h\}$$

Disjoint set
A =
$$\{1,23,4\}$$

 $B = \{p, q, r, s\}$

Activity

Mk new edition pg 3-4 Understanding mtc pg 4-7 Fountain pg 7-8

Remarks

LESSON 3

Sub topic	:	Types of sets

Content:

- (a) Difference of sets
 - i) shading of regions
 - ii) describing regions
- (b) Complement of sets
 - i) find complement of sets
 - ii) shading regions with complement of sets

Examples:

LESSON 4

Sub topics sub sets (\subset) Content:

- (a) Listing / forming subsets
- (b) Numbers of sub sets
- (c) Number of proper subsets

Examples:

- (i) Representing subsets on diagrams
 - i.e All cows (C) are animals (A)

cows C animals

Listing/ forming sub sets (ii) $A = \{x, y\}$ Sub sets are $\{ \}, \{x\}, \{y\}, \{x, y\}$ Find number of subsets; (iii) Formula: 2^{n} (n stands for number of members) Eg set $R = \{1, 2, 3\}$ 2n No of subsets = 2^{3} = 2 x 2 x 2 = 8 = find number of proper subsets iv) $(2^{n}-1)$ Set $P = \{a,b,c,d\}$ No of proper subsets $(2^{n}-1)$ 2^{4} -1 (2x2x2x2)-116-1 15 proper sub sets

Activity

Mk new edition pg 6-7 Fountain mtc pg 8-10 Understanding mtc pg 4-6 **Remarks**

LESSON 5 Subtopic:

Content:

Findi	ng number of elements in sets.
(a)	listing members of sets

For more lesson notes, visit www.freshteacheruganda.com

n(A) = 7

n(B) = 5

 $n(A\cap B) = 2$

n(A-B) = 5

n(B-A) = 3

 $n(A \cup B) = 10$

Interpreting information given on a venn diagram (b)

Examples:

- Given that n(A) = 7, n(B) = 5 and n(A n B) = 2(i)
- Draw a venn diagram to represent the above information (ii)

Activity Mk old edition pg 22-25

Remarks

LESSON 7

SUBTOPIC Application of sets: :

Content : Interpreting word problems using the venn diagram (real life situations)

In a class, 12 pupils like English (E), 15 pupils like Maths **Examples:** (a) (M) and 5 pupils like both Eng and Maths. Draw a venn diagram to represent the information above.

In a class of 30 pupils, 20 take Mirinda (M), 15 take Fanta (F) (b) and some take both drinks while 2 take neither of the drinks.

```
Show this information on a venn diagram
(i)
```


Let y represent those who take both.

Activity

- Understanding mtc pg 13-15 (i)
- (ii) Fountain p g 10-13
- (iii) Mk new edition pg 8-9

Remarks

6

= 30

= -7

-1

= 7

= 30 - 37

(b) Find n (P n Q) (ii) n (P u Q) (iii) n (Q - P)

(iv) n(P) only (v) n(Q) (vi) $n(P)^1$

- 7. In a market 24 traders sell cloth (C), and 30 traders sell food (F). If 16 traders sell both items, draw a venn diagram and find out how many traders sell only one type of commodity.
- 8. In a class of 30 pupils, 18 eat meat, 10 eat beans and 5 do not eat any of the two types of food.
 - (i) Show this information on a venn diagram
 - (ii) How many pupils eat meat only?
 - (iii) Find those who eat beans only.
 - (iv) How many pupils eat only one type of food?
 - (v) Find the number of pupils who eat both types of food.
 - (vi) What is the probability of choosing a pupil at random who eats meat?

TOPIC/ UNIT TWO

THEME: NUMERACY TOPIC: WHOLE NUMBERS

LESSON I			
Subtopic:	Value value	es	
Content :	Value of dig	gits in numerals	
Examples:	(i) Fir	nd the place value	
	(ii) Fir	nd the value of each digi	t
Number		Place value	value
		Ones Tens Hundreds Thousands Ten thousands Hundred thousands Million	5 x 1 = 5 2 x 10 = 20 7 x 100 = 700 8 x 1000 = 8000 3 x 10000 = 30000 4 x 100000 = 40000 9 x 1000000 = 9000000

ii) Using operations to find values of digits **Activity**

Mk new edition pg 14-15 Fountain pg 20-23 **Remarks**

LESSON 2

Subtopic: Expanded form Content (i) Expand

(i) Expand using values / place values

(ii) Expand using powers of ten

Examples:

 (a) Expand 6845 using values Th HTO 6845 = (6 x 1000) + (8 x 100) + (4 x 10) + (5 x 1) = 6000 + 800 + 40 + 5
 b) Using power exponents 6323450 = (6 - 103) + (9 - 102) + (4 - 101) + 5 - 10

 $6^{3}8^{2}4^{1}5^{0} = (6 \times 10^{3}) + (8 \times 10^{2}) + (4 \times 10^{1}) + 5 \times 10^{0})$ $6845 = 6.845 \times 10^{3}$

Activity

MK new edition pg 16-17 Understanding mtc pg 25 Fountain pg 23-24 **Remarks**

LESSON 3

Scientific /standard form

Content : expanding number using scientific notation Example: Express 6845 in scientific form $6845 = 6845 \div 10$ $684.5 \div 10$ $68.45 \div 10$ 6.845×10^3

LESSON 4

Content:

- **SUBTOPIC**: Expressing expanded numbers as single numeral.
 - (i) Expanded form of values
 - (ii) Expanded form of place values
 - (iii) Expanded form of exponents.(a) Write in short:

Examples: (a) $4000 \pm 60 \pm 2$

4000 + 60 + 2

4000		
+ 60		
+ 2		
4062		

(b) $(8 \times 10000) + (7 \times 1000) + (5 \times 100) + (9 \times 10) + (3 \times 1)$ 80,000 + 7,000 + 500 + 90 + 3 80000 7000 500 90 + 387593

(c) $(6 \times 10^{3}) + (4 \times 10^{2}) + (2 \times 10^{1}) + (3 \times 10^{0})$ $(6 \times 10 \times 10 \times 10) + (4 \times 10 \times 10) + (2 \times 10) + (3 \times 1)$ 6000 + 400 + 20 + 3600040020<u>+ 36425 $(d) 6.42 \times 10^{2} = 6.42 \times 100 = 642$ </u>

Activity

- Fountain pg 23-24
- Mk new edition pg 16-17

Remarks

LESSON 5

Subtopic: Reading and writing numbers in words Content : Expressing numerals in words upto millions. Examples A 9452 9000 – nine thousand 400 – four hundred

52 - fifty two

Therefore; 9452 = nine thousand four hundred fifty two Examples: (b) write 1486019 in words 1000000 – One million 486000 - Four hundred eighty six 19 - Nineteen \therefore 1486019 = One million, four hundred eight six thousand nineteen Activity: MK new edition pg 18-19 Fountain pg 25.

Remarks

LESSON 6		
Subtopic:	writing words in figures	
Content:	Writing number words in	figures to millions
Write in figures		
Examples A		
Four hundred th	ousand, seven hundred six	teen
Solution:		
	Four hundred thousand	400000
	Seven hundred sixteen	+ 716
		400716

One million one hundred one thousand eleven ii) Activity MK new edition pg 18-19 Fountain pg 25. Remarks **LESSON 7** Subtopic: Rounding off whole numbers Round off to the nearest **Content:** (i) Tens (ii) Hundreds (iii) Thousands Round 677 to the nearest tens **Examples:** (i) 67 +10

680

(ii) Round 1677 to the nearest hundreds $16 \frac{\pi}{1}$ + 100 1700

iii) Round off 34567 to the nearest thousandsActivityMk old edition pg 47-48Remarks

LESSON 8

Subtopic:	Decin	nal numbers
Content:	Place	values of decimal in words and figures.
Examples:	(a)	$\underline{1}$ \longrightarrow One tenth $-0.\underline{1}$
		10
		Place value of 1 in 0.1 is Tenths.
	(b)	$\underline{8} \longrightarrow \text{Eight hundredths} - 0.8$
		100
	(c)	Find the value of each digit
		4.6
		Tenths $-6 \times \frac{1}{10} (6 \times 0.1) = 0.6$
		$Ones - 4 \ge 1 = 4$

Number	Place values	Values
6.73	6 – ones	6x1 = 6
	7 – tenths	7x1/10 = 0.7
	3 = hundredths	$3 \ge 1/100 = 0.03$

Activity

Mk old edition pg 42-44 **Remarks**

LESSON 9

Subtopic:	Readii	ng and writing decimals in words and the vice verse
Content:		(i) Writing decimals in words
	(ii)	Expressing decimals in figures from words

Activity

Mk old edition pg 45- 46 **Remarks**

LESSON 10

Subtopic:	Expandi	ding decimal numerals		
Content:	(i)	Expand using place values		
	ii)	Expand using values		
	(iii)	Expand using exponents		
Examples:	(i)	Expand 3.54		
		Hundredths $-4 \text{ x}^{-1}/_{100} = 0.04$		
		Tenths $-5 \ge 10 = 0.5$		
		10		
		Ones = $3 \times 1 = 3$		
	: 3.54	= 3 + 0.5 + 0.04		
	(ii)	Expand 4.62 using exponents/		
		0 -1 -2		
		4.6 2		
		$4.62 = (4 \times 10^{0}) + (6 \times 10^{-1}) + (2 \times 10^{-2})$		
	(iii)	Write as a single numeral		
		(a) $3 + 0.5 + 0.04$		
		3		
		0.5		
		+ 0.04		
		3.54		

(b) Express in the shortest form

$$(4x10^{0}) + (6x10^{-1}) + (2x10^{-2})$$

 $4 x 100 = 4 x 1 = 4$
 $6 x -10 = 6 x^{1}/_{10} = 0.6$
 $2 x 10^{-2} = 2 x^{1}/_{100} = 0.02$
 4.62

Activity

The pupils will do exercises 8:8 and 8:9 A New MK 2000 BK 6 pg 59 (old Edn)

Remarks

LESSON 11

Subtopic:		Expressing decimal in scientific notation.						
Content:		Expend	Expend decimals of different place values in standard/ Scientific					
		notation	1.					
		(a)	Tenths					
		(b)	Hundre	dths				
		(c)	Thousa	ndths				
Exampl	les:	(i)	0.4 in s	tandard form				
			0.4 = 4.	.0 x 10 ⁻¹				
		(ii)	$2.52 = 2.52 \text{ x } 10^{\circ}$					
		(iii)	$23.63 = 2.363 \times 10^{1}$					
		(iv)	$464.241 = 4.64244 \ge 10^2$					
Activity	y							
Express	s the follo	owing to a	standard i	form:				
(a)	4.8		(b)	3.25	(c)	38.06		
(d)	207.4		(e)	4819.2	(f)	23.63		
(g)	49		(h)	29.7				
(i)	0.006		(j)	120.0				
Remar	ks							

LESSON 12

Content:	
Example	

Finding expanded decimals ampie

- What number has been expanded a) 3+0.5+0.04i) (4x10) + (6x1) + (7x0.01)ii) $(6x10^3) + (4x10^1) + (9x10^{-2})$ iii) Remarks **Ref: MK old edition pg 47-48 LESSON 13** Subtopic: Ordinary decimals Content: Arrange in ascending and descending order (a) Example: (i) 0.1. \equiv
 - Arrange the following in ascending and descending order 2.0 and 0.04

	$\frac{1}{10}$, $\frac{2}{1}$, $\frac{4}{100}$	(LCM = 100)
⇒	$\frac{1}{10} \ge 100 = \frac{1 \ge 10}{1} = 10$	(2 nd)
	$\frac{2}{1} \ge 100 = \frac{200}{1} = 200$	(3 rd)
	$\frac{4}{100} \times 100 = \frac{4 \times 1}{1} = 4$	(1 st)
scendi	ng order = 0.04, 0.1, 2.0	

Arrange the following in descending order (ii) 3.5, 4.05, 0.45, 0.02 (LCM = 100)35. 405. 45. 2 10 100 100 100 $35 \ge 100 = 350$ $45 \ge 100 = 45$ 10 100 $\underline{2} \ge 100 = 2$ 405 x 100 = 405 100 100

<u>Descending order</u> = 4.05, 3.5, 0.45, 0.02*.*..

Activity

The pupils will do exercises below:

- 1.5, 0.015, 0.015, 15.0 (Ascending order) (1)
- (2) 0.5, 5.5, 1.5, 5.1 (descending order)
- 0.33, 0.3, 3.3 (Ascending order) (3)
- 0.2, 0.75, 0.5 (Descending order) (4)

(5) 0.25, 0.5, 0.4, 0.6 (Ascending order)

Remarks

Ref: Trs' collection

LESSON 14						
Subtopic:	Rounding off decimals					
Content :	Round of	off to the nearest:				
	(a) Tenths / one place of decimal					
	(b)	Hundredths / two places of decimals				
	(c)	Thousandths / three places of decimal				
	(d)	Ones / whole number				
Example:	(i)	Round off 4.25 to the nearest whole no.				
1		41.25				
		+ 0.00				
		4. ØØ ∴4.25 £ 4				
	(ii)	29.67 to nearest tenths				
		29. 67				
		+.10				
		29. 7∕0 ∴ 29.67 <u>≏</u> 29.7				
	(iii)	39.95 to nearest tenths				
		39.9 <i>/</i> 5				
	_	+ . 10				
		40.00 <u><u><u></u></u> 40.0</u>				
Note: consider t	- ho answe	ar unto the required place value				
Dof	110 all5W0	er upto the required place value				
	40					

MK old edition pg 48 Understanding mtc pg 33-35

LESSON 15

Subtopic:		Roman and Hindu Arabic Numerals
Content:	(i)	Reading writing Roman numerals to 10,000

	(11)	Expres	ssing Hit	idu Aradic	numerals	s in Roma	in system
Example:	(i) Basic digits / numerals						
Hindu Arabic	: 1	1 5	10	50	100	500	1000
Roman	1	l V	X	L	C	D	М
(ii)	75	_	70 ± 5	5			
(11)	15	_		, + V			
		=	LXXV	V			
(iii)	555	=	500 +	50 + 5			
			D +	- L + V			
			DLV	7			
Activity		40 -					
 Mk ol 	d edition	pg 49-51	0				
TT. 1.							
- Under	standing	pg 36-3	9				
- Under - Fount	rstanding ain pg 26	pg 36-3 -30	9				
- Under - Fount	rstanding ain pg 26	pg 36-3 3-30	9				
- Under - Fount LESSON 15	standing ain pg 26	pg 36-3 30					
- Under - Fount LESSON 15 Subtopic:	estanding ain pg 26 Expre	pg 36-3 -30 ssing Ror	9 	nerals to H	indu Aral	Dic numer	als
- Under - Fount LESSON 15 Subtopic: Content:	Expre Conve	pg 36-3 -30 ssing Ror ert from R	9 nan Nun coman nu	nerals to H umerals to	indu Arał Hindu A	oic numer rabic nun	als
- Under - Fount LESSON 15 Subtopic: Content:	Expre	pg 36-3 -30 ssing Ror ert from R	9 nan Nun Coman nu	nerals to H umerals to	indu Aral Hindu A	bic numer rabic nun	als nerals
- Under - Fount LESSON 15 Subtopic: Content: Examples:	Expre Conve (i)	pg 36-3 -30 ssing Ror ert from R Write	9 nan Nun Coman nu LXXV in	nerals to H umerals to n Hindu Ar	indu Arał Hindu A rabic syst	bic numer rabic nun em	als nerals
- Under - Fount LESSON 15 Subtopic: Content: Examples:	Expre Conve (i)	pg 36-3 -30 ssing Ror ert from R Write LXXV	9 nan Nun Coman nu LXXV in	nerals to H umerals to n Hindu Au 50	indu Arał Hindu A rabic syst	bic numer rabic nun em	als herals
- Under - Fount LESSON 15 Subtopic: Content: Examples:	Expre Conve (i)	pg 36-3 ssing Ror ert from R Write LXXV L XX	nan Nun Coman nu LXXV in = =	nerals to H umerals to n Hindu Au 50 20	indu Arał Hindu A rabic syst	bic numer rabic nun em	als nerals
- Under - Fount LESSON 15 Subtopic: Content: Examples:	Expre Conve (i)	pg 36-3 -30 ssing Ror ert from R Write LXXV L XX V	nan Nun coman nu LXXV in = = =	nerals to H umerals to n Hindu An 50 20 5	indu Arał Hindu A rabic syst	bic numer rabic nun em	als nerals
- Under - Fount LESSON 15 Subtopic: Content: Examples:	Expre Conve (i)	pg 36-3 ssing Ror ert from R Write LXXV L XX V	nan Nun coman nu LXXV in = = =	nerals to H umerals to n Hindu Au 50 20 5 75	indu Arał Hindu A rabic syst	pic numer rabic nun em	als nerals
- Under - Fount LESSON 15 Subtopic: Content: Examples:	Expre Conve (i)	ssing Ror ert from R UXXV L XX V CCCX	nan Nun coman nu LXXV in = = = 	nerals to H umerals to n Hindu Au 50 20 5 75	indu Arał Hindu A rabic syst	bic numer rabic nun em	als nerals
- Under - Fount LESSON 15 Subtopic: Content: Examples:	Expre Conve (i)	pg 36-3 ssing Ror ert from R Write LXXV L XX V CCCX CCC	nan Nun coman nu LXXV in = = = CIX =	merals to H umerals to n Hindu Au 50 20 5 75 300	indu Arał Hindu A rabic syst	bic numer rabic nun em	als herals
- Under - Fount LESSON 15 Subtopic: Content: Examples:	Expre Conve (i)	ssing Ror ert from R Write LXXV L XX V CCCX CCC XC	nan Nun coman nu LXXV in = = = CCIX = =	nerals to H umerals to n Hindu Au 50 20 5 75 300 90	indu Arał Hindu A rabic syst	bic numer rabic nun em	als herals
- Under - Fount LESSON 15 Subtopic: Content: Examples:	Expre Conve (i)	pg 36-3 ssing Ror ert from R Write LXXV L XX V CCCX CCC XC IX	nan Nun coman nu LXXV in = = = 	nerals to H umerals to n Hindu Au 50 20 5 75 300 90 9	indu Arał Hindu A rabic syst	bic numer rabic nun em	als nerals

(iii)	CMLY	XIX	
	CM	=	900
	LX	=	60

			IX	=	9		
					969		
Activity	y .						
-	Mk old	edition	pg 49-51				
-	Underst	anding	mtc pg 30	5-39			
-	Fountai	n pg 26-	-30				
LESSO	N 16						
Subtopi	c:	Operat	ions on F	Roman N	umerals		
Content	•	(a)	Additi	on			
		(b)	Subtra	ction			
Exampl	es:	(i)	Work	out and a	nswer in Hi	ndu Arabic	
			XL +	XV			
			XL =	40			
			<u>XV</u> =	= + 15			
				55			
		(ii)	Simpli	plify in Roman system			
			LXXX	X - XX		subtract $\therefore 60 = LX$	
			LXXX	X = 80		80	
			XX	= 20		- 20	
						60	
		(iii)	Peter h	nad LIX g	goats and so	ld XIV goats	
			How n	nany goa	ts remained	(answer in Hindu Arabic)	
			LIX		69		
			XIV		- 14		
					55 goat	<u>s</u>	
Activity	y .						
The pup	oils will d	lo exerci	ses below	<i>N</i> .			
(1)	XI + IX			(6)	XXV – X	ΚV	
(2)	VII + L	-		(7)	XL - VI	ĺ	
(3)	CD + X	IV		(8)	XIX - IX	<u>C</u>	
(4)	XVI + X	XIV		(9)	CM - CI	ـ	
(6)	XX + II	Ι		(10)	Word pro	oblems	
Remar	ks						
Ref: M	k old edi	tion pg	50-51				

LESSON 17

Subtopic:conversing from base ten to base fiveContent:(a)Change from base ten to base fiveExamples:(i)Change 23 to base five52323143 $\therefore 23 = 43_{five}$

b) Converting from base ten to binary base

 $19_{ten} = 10011_{two}$

Remarks

LESSON 18

Subtopic: Content:	Chang	Changing to decimal / base ten				
Examples:	(a)	express $412_{\text{ five}}$ to base ten				
		$\begin{array}{l} {}^{2\ 1\ 0}\\ 4\ 1\ 2 _{five} = (4\ x\ 5^2) + 1\ x\ 5^1) + (\ 2\ x\ 5^0)\\ = (4x5x5) + (1x5) + (2x1)\\ = 100 + 5 + 2\\ = 107_{ten} \end{array}$				
Examples:	(ii)	change 1011two to base ten				

For more lesson notes, visit www.freshteacheruganda.com

1011two = (1x2) (1x2)	$ \begin{array}{c} 3 \\ 3 \\ +(1x2^{1}) \\ +(1x2^{0}) \\ 2x2x2) \\ +(1x2) \\ +(1x1) \\ 8 \\ +2 \\ +1 \end{array} $	Trs' collection Remarks		
Activity Trs' collection Remarks	11 _{ten}	LESSON 21 Subtopic: Content:	Multiplication in Binary system Multiply (i) 2 by 2 (ii) 3 by 2 (iii) to 4 b 3 digit numerals	
LESSON 19 Subtopic: Content: Examples:	Operations on bases Addition of same non decimal base numerals (i) $2 3_{\text{five}} + 21_{\text{five}}$ $+ \frac{2 1_{\text{five}}}{4 4_{\text{five}}}$	Examples:	(i) $10_{two} \times 11_{two}$ $\frac{10_{two}}{1.0}$ $\frac{10_{two}}{1.0}$ $\frac{10_{two}}{1.0}$ $\frac{10_{two}}{1.10_{two}}$	
Activity Trs' collection Remarks	(ii) Add: 1101 + 11two	Activity Trs' collection Remarks	(ii) 11two x 11two 111_{two} $x 11_{two}$ 111 + 111 10101_{two}	
LESSON 20 Subtopic : Content: Examples:	Subtraction of bases Subtraction in non decimal bases in the same base. (i) Subtract $34_{\text{five}} - 13_{\text{five}}$ <u>- 13_{five}</u> <u>- 13_{five}</u> 1011 two (ii) Subtract <u>- 111two</u> 0100two	LESSON 22		
Activity		Subtopic:	Operations on finites	

Activity Remarks

LESSON 23

SUBTOPIC: Multiplication in finite systems Examples: Work out $3 \ge 4 = x$ (finite 5) (i) 3 x 4 means 3 groups of 4 \therefore 3 x 4 = 2 (finite 5) So x = 2 (finite 5) $3 \times 4 = x$ (finite 5) (ii) $3 \times 4 = 12$ $12 \div 5 = 2 \times 2$ $3 \ge 4 = 2$ (finite 5) \therefore x = 2 (finite 5) Activity Ref: MK old edition pg 245-253 Remarks LESSON 24 Subtopic: Subtraction in finite system. Using the dial Content: (a) By calculation method (b) Example: Subtract 3 - 4 = - (finite 5) (i) $\therefore 3 - 4 = 4$ (finite 5)

(ii) 3-4 = - (finite 5)(3+5)-48-4= 4 $\therefore 3-4 = 4 \text{ (finite 5)}$ Activity Mk old edition pg 245-253

Remarks

LESSON 25

Subtopic:	Algebra in finite system				
Content:	Solve equations in finite system				
Examples:	(i) Solve: $p-4=3$ (finite 6) P-4+4=3+4 (finite 6 P+0=7 (finite 6) $P=7 \div 6=1 r 1$ P=1 (finite 6)				
	P = 1 (limite 6)				
(ii)	Find x if $2x - 3 = 3$ (finite 4) 2x - 3 = 3 (finite 4) 2x - 3 + 3 = 3 + 3 (finite 4) 2x + 0 = 6 (finite 4) $\frac{2x}{2} = \frac{6}{2}$ X = 3 (finite 4)				
ii) 2x-3=4((finite 5)				

) 2x-3=4(finite 5) 2x-3+3 = 4+3 (finite 5) 2x = 7 (finite 5) 2x = 7 + 5) (finite 5) $\frac{2x}{2} = \frac{12}{2} \text{ (finite 5)}$ X = 6 (finite 5)

For more lesson notes, visit www.freshteacheruganda.com

Activity Trs' collection Remarks

LESSON 26

Subtopic:	Application of finites.				
Contents:	Use ideas on finites to solve everyday life problems: (weeks, months)				
Examples:	 (a) If today is a Friday, what day of the week will it be days. Day + 23 = - (finite 7) 5 + 23 = 28 28 ÷ 7 = 4 r 0 0 (finite 7) ∴ The day will be Sunday. 				
	(b)	If today is Friday, what day of the week was 45 days ago? Day - 45 (finite 7) $5 - \frac{45}{7} = 6 r 3$ 5 - 3 (finite 7) 2 finite 7 \therefore It was Tuesday			
	(c)	It is April now, which month will it be after 18 months Month – 18 (finite 12) $4 - \underline{18}$ 1 r 6 $\underline{12}$ 4 - 6 (4 + 12) - 6 16 - 6 = 10 (finite 120) It will be October.			
Activity MK old edition 2	57 753				

MK old edition 252-253

Remarks

REVISION WORK ON WHOLE NUMBERS

1.	Given d	igits 8, 4, 2					
	(a)	Write down all th	he numer	als you can	form u	sing the o	digits.
	(b)	Find the differen	ce betwe	en the high	est and	the lowes	st numeral
		formed.		C			
2.	Find the	place value and v	value of 1	the underlin	ed digi	ts.	
	(a)	<u>4</u> 6657 (b) 1	67 <u>8</u> 5	(c) 1 <u>6</u> 345	-		
3.	Expand	8739 using					
	(a)	values	(b) pl	ace values	(c) Powers	5
4.	Write 74	432 in standard/ se	cientific f	orm			
5.	Express	the following in s	single for	m			
	(a)	5000 + 70 + 3					
	(b)	(7 x 10000) + (8	3 x 1000)	+ (3 x 100) + (7)	x 10)+(2 x 1)
	(c)	$(7 \text{ x } 10^3) + (4 \text{ x }$	$10^2) + (1)^2$	$3 \ge 10^1 + 5$	x 10 ⁰)		
	(d)	8.56 x 10 ²					
6.	Write 25	592028 in words					
7.	Write: six million, eight hundred thousand, nine hundred sixteen						
8. (a) Round off 4867 to the nearest tens							
	(b)	Round off 79581	to the ne	earest hund	reds.		
	(c)	Round off 79581	to the ne	earest thous	ands.		
9.	Write th	e place value and	value of	the underlin	ned dig	its	
	(a)	0.7 <u>8</u> 4	(b)	3. <u>7</u> 82		(c)	5.94 <u>8</u>
10.	Write 0.	328 in words					
11.	Write Twenty seven and six tenths in figures.						
12.	Expand	5.78 using					
	(a)	place values	(b) val	ues	(c) exp	onents	
13.	Express	0.432 in standard	form				
14.	Arrange 0.44, 0.4, 4.4 in ascending order.						
15.	Arrange 0.35, 0.5, 0.7, 0.33 in descending order.						
16.	Round off 39.96 to the nearest tenth.						
17.	Write 99 in Roman Numerals.						
18.	Write XLV in Hindu Arabic system.						
19.	Work out: $XI = IX$						
20.	Change 26_{ten} to base six.						
21.	Write 346 _{seven} in words.						

- 22. Give the place value of each digit in 243_{five} .
- 23. Expand 462 seven using powers.
- 24. Change 341_{six} to base ten
- 25. Change 124_{five} to base six.
- 26. If $17_{\rm X} = 16_{\rm ten}$ find value of x
- 27. Add $55_{\text{seven}} + 33_{\text{seven}} = _$ _____ seven.
- 28. Subtract: $44_{\text{five}} 12_{\text{five}}$
- 29. Multiply $10_{two} \ge 11_{two}$
- 30. Change 13 to finite 7.
- 31. Add: 4 + 4 =_____ finite 5

(a)

- 32. Multiply: 2 x 4 = _____ finite 5
- 33. Subtract: 2 4 =_____ finite 6
- 34. Divide $5 \div 3 =$ ______ finite 7
- 35. Solve: x 4 = 3 finite 6
- 36. If today is Friday, what day of the week will it be after 22 days?
- 37. If today is Thursday, what day of the week was it 44 days ago?
- 38. It is 2.00 pm what time of the day will it be after 400 hours?

TOPIC / UNIT OPERATIONS ON WHOLE NUMBERS. LESSON 1

- Subtopic:Addition of whole numbers up to millions.Content:Adding large whole numbers up to millions with and without
carrying.
- Examples :

Example: (b) There were 246 240 books in a library and 167 645 more books were donated to the same library. How many books are these altogether? $2 \ 4 \ 6 \ 2 \ 4 \ 0$ $+ \ 1 \ 6 \ 7 \ 6 \ 4 \ 5$ $4 \ 1 \ 3 \ 8 \ 5 \ books$

Activity Understanding mtc pg 40-42 Fountain pg 32-35

MK new edition pg 24-25 **Remarks**

LESSON 2.

Subtopic: Content:	Subtraction of whole numbers ot millions. Subtract large numbers up to millions.
Examples:	(a) $\begin{array}{cccccccccccccccccccccccccccccccccccc$
. Examples: (b)	A dairy processed 6500 650 litres of milk and sold 5650945 litres. How many litres were left?

	6	500	650 litres
-	5	650	945 litres
		849	705 litres

Activity

MK new edition pg 27 Fountain pg 33-34 Understanding mtc pg 43-45.

LESSON 3 Subtopic:

Subtopic:	Multi	plication
Content:	Multi	plication of large numbers
	-	By 2 digit number
	-	By 3 digit number
Examples:	(i)	1 4 3
-		x 18
	_	1144
	+	1430
		2574

3 6 1.2 12 ...

Example: (b)

A company has 850 workers who earn sh 5460 each a day. How much does the company spend on wages everyday?

17

For more lesson notes, visit www.freshteacheruganda.com

Activity

Fountain pg 34-36 / understanding mtc pg 46-49/ MK new edition pg 28 **Remarks**

LESSON 4

Subtopic:	Divisio	n
Content:	Divide	large numbers.
	-	By 2 digit
	-	By 3 digit
Examples:	(i)	152
-		13 1976
		- 13
		67
		- 65
		26
		- 26
		00
	(ii)	53
		120 6360
		- 600
		360
		- 360
		000
Activity		
Mk new edition	on pg 37-38	3

Fountain pg 37-38 Understanding MTCpg 49-53

Remarks

blems involving divisistation manger bought ount of oil in 440 drum n? 50 $440 \boxed{220000}$ $-2200 \boxed{0}$ 0 -0 0	on of large 2200 litres ns. How ma 44 88 13 17	numbers. of motor oil. If she put ny litres of oil were in 40 30 320 760
blems involving divisistation manger bought ount of oil in 440 drum n? 50 $440 \boxed{220000}$ $-2200 \boxed{0}$ 0 -0 0	on of large 2200 litres ns. How ma 44 88 13 17	numbers. of motor oil. If she put my litres of oil were in 40 30 320 760
station manger bought ount of oil in 440 drum n? 50 $440 \boxed{220000}$ $-2200 \boxed{0}$ -0 0 320	2200 litres ns. How ma 44 88 13 17	of motor oil. If she put iny litres of oil were in 40 30 320 760
$\begin{array}{r} \begin{array}{c} \text{count of oil in 440 drun} \\ \text{n?} \\ \underline{50} \\ 440 & \boxed{220000} \\ \underline{-2200} \\ 0 \\ \underline{-0} \\ 0 \end{array}$	15. How ma 44 88 13 17	40 30 320 760
$ \begin{array}{r} $	44 88 13 17	40 80 320 760
$ \begin{array}{r} 50 \\ 440 \overline{)220000} \\ -2200 \hline 0 \\ -0 \\ 0 \\ -0 \\ 0 \end{array} $	44 88 13 17	40 80 320 760
$ \begin{array}{c} -2200 \\ -2200 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \end{array} $	88 13 17	30 320 760
$ \begin{array}{c} -2200 \hline 0 \\ -0 \\ 0 \end{array} $	13 17	320 760
<u>-0</u> 0	17	760
0	Γ	/60
50		
50		
50		
52		
N 4		
55		
d operations on numbe	rs	
O MAS		
Work out: $9 - 15 + 6$		
(9+6) - 15		
15 – 15		
0		
8 ÷ 4 x 3	(iii)	$18 - (4 x 3) \div 6$
в ю́ D M A S		
$(8 \div 4) \ge 2$		
2 x 2		
4		
angoes in the morning	and ate 28	of them .
the evening. How ma	ny mangoes	s did he have at the end
-		
	d operations on number D MAS Work out: $9 - 15 + 6$ (9 + 6) - 15 15 - 15 0 $3 \div 4 \ge 3$ 8 \cancel{O} D M A S $(8 \div 4) \ge 2$ $2 \ge 2$ 4 ingoes in the morning the evening. How mathematical sectors of the sectors of th	d operations on numbers D MAS Work out: $9 - 15 + 6$ 9 + 6 - 15 15 - 15 0 $3 \div 4 \times 3$ (iii) 8 \cancel{O} D M A S $(8 \div 4) \times 2$ 2×2 4 mgoes in the morning and ate 28 the evening. How many mangoe

MK new edition pg31-32 Understanding mtc pg 54-59 **Remarks**

LESSON 7				
Subtopic:	Proper	operties of numbers.		
Content:	(i)	Commutative properties		
	(ii)	Distributive property		
	(iii)	Associative property		
Example:	(i)	Commutative		
		Order of addition or multiplication does not change the results		
		(a) $3+4=4+3$ $7=7$ (b) $4 ext{ } x ext{ } 5=5 ext{ } 4$ 20=20		
	(ii)	Associative property Order of grouping two numbers in <u>addition</u> or <u>Multiplication</u> does not change results e.g $3 + (8+9) = (3+8)+9$ 3+17 = 11+9 20 = 20		
	(iii)	Distribution property e.g Work out using distributive property $(2 \times 3) + (2 \times 4)$ 2 (3 + 4) 2 (7) $2 \times 7 = 14$		

Activity

Trs' collection

Remarks

REVISION WEEK ON OPERATIONS ON NUMBERS

1. Add: 8975631 +2867542

2. Add: 231 048 + 524 628

3. There were 351 272 books in a library and 189 242 more books were donated to the same library. How many books are there altogether?

- 4. Subtract: 6432278 -2321101
- 5. Subtract 452 367 from 872 291
- 6. A dairy processed 5300 450 litres of milk and sold 3450833 litres. How many litres were left?
- 7. Multiply 145 by 19?
- 8. Multiply 1238 by 134
- 9. A bus carries 84 passengers each trip. How many people will it carry if it makes 18 trips?
- 10. Divide 5984 ÷ 68
- 11. A farmer has sh 688640 to pay to 32 workers. How much money does each worker get?
- 12. Work out $18 (3 \times 2) \div 6$

TOPIC / UNIT 4: PATTERNS AND SEQUENCES:

LESSON 1

Subtopic:	Divisi	bility tests
Content:	-	Divisibility tests of 2, 5, 10
	-	Divisibility by 3, 6, 9
	-	Divisibility by 4 and 8
Example:	(a)	By 3
-		A Number is divisible by 3 when the sum of its digits 15 a multiple of 3.
		E. g 612
		6 + 1 + 2
		$9 \div 3 = 3$
		\therefore 612 is divisible by 3
	(b)	Divisibility by 8:
		A number is divisible by 8 when the last three digits form a
		multiple of eight.
	e.g 6 <u>2</u>	248 last 3 are 248

: 6248 is divisible by 8

Activity

MK new edition pg 34-36 Fountain pg 41-42 Understanding pg 60-61 **Remarks**

LESSON 2 Subtopic:

Content:

Develo	ping nu	ımber	patterns	
-	Odd a	and ev	en numbe	rs
	- ·			

- Triangular numbers
- Rectangular numbers
- square numbers

Examples:	(i)	 Lists down the following: (a) Counting / natural numbers less than 15. (b) Whole numbers up to ten (c) Even numbers between ten and 20. (d) Odd numbers less than twenty 	
	(ii)	Triangular numbers E.g $0 \rightarrow 1 0 \rightarrow 3 0$ 1 + 2 = 3 0 0 1 + 2 + 3 = 3	0
N.B	Find ti i. e (1, (iii)	iangular numbers by adding the consecut 3, 6, 10, 15,) Rectangular numbers	ive natural numbers
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 x 5 10

(iv)	Squar	e numbers		
	e.g	0 0	000	0 0 0 0 0
0		0 0	000	0000
1 x 1 =	1	$2 \ge 2 = 4$	3 x 3 = 9	4 x 4 = 16

Activity

Fountain pg 43-48 MK new edition pg 37 Understanding pg 62-65 **Remarks**

LESSON 3

Subtopic:	Prime and composite numbers.
Content:	- List prime numbers
	~

- Composite numbers
- Examples: (i) What is the sum of the 3rd and the 7th prime numbers Prime numbers are:

Sum = 5 + 17= 22 (ii) Work out the sum of the first five composite numbers Composite numbers are; 4, 6, 8, 9, 10, 12, 14, 15, Sum is 4 + 6 + 8 + 9 + 10 =37

Activity

The Pupils will do exercise 4 : 13 and 4 : 14 from pgs 79 and 80. A New MK BK 6.

Remarks

LESSON4

Subtopic:	Consecutive numb	pers / natural nu	mbers / inte	gers		
Example:	The sum of 3 consecutive whole numbers is 36. What are these					
	Let the 1 st number 2 nd numb 3 rd numb	be n. er = n + 1 er = n + 2				
	But: $n + n + 1$ $n + n + n$ $3n + 3$ $3n + 3 - 3$ $\frac{3n}{3}$ $\therefore n$	+n+2 = +n+1+2 = = = = = = = = = = = = = = = = = = =	36 36 36 36-3 <u>33</u> 3 11			
A	1^{st} number = n and n = 11	2 nd number 11 + 1	(n + 1) = 12	3^{rd} number is (n + 2) 11 + 2 13		

Activity Mk old edition pg 76-78 Remarks

LESSON5					
Subtopic:	Consec	utive numbers			
Content:	It: Find the consecutive EVEN and ODD numbers				
Example:	<u>N.B</u>	Even and Odd	<u>l numbers</u> i	ncrease in intervals of 2	
	(i)	The sum of th	ree consecu	utive Even numbers is 24. list	
		down the 3 nu	umbers		
		Let the 1 st nur	mber by (x)		
		2^{nd} n	umber be (x + 2)	
		3 rd n	umber be (x	x + 4)	
	X + x +	-2 + x + 4	=	24	
	X + x +	-x + 2 + 4	=	24	
		3x + 6	=	24	
		3x + 6 - 6	=	24 - 6	
		<u>3x</u>	=	<u>18</u>	
		3		3	
		X	=	6	
These EVEN 1 st is	Numbers an 6,	e: 2^{nd} is,	3 rd		
		X + 2	x + 4		
		6 + 2	6 + 4		
		8	10		
Activity MK old edition	on og 77-78				
Mk New Edit	ion 43				
Remarks					
LESSON 6					
Subtopic:	Factors				
Content:	-	Listing factor	s		
	-	The common	factors (CF	<i>z</i>)	
	-	The HCF / G	CF		
	-	The LCF			

Examples:	(i)	How many factors does 18 have? $F_{18} = \{1, 2, 3, 6, 9, 18\}$ \therefore 18 has 6 factors	
	(ii)	Work out the sum of all the F20 $F20 = \{1, 2, 4, 5, 10, 20\}$ Sum = 1 + 2 + 4 + 5 + 10 + 20 = 42	1
	(iii)	Work out the GCF of 12 and 18 $F12 = \{1, 2, 3, 4, 6, 12\}$ $F18 = \{1, 2, 3, 6, 9, 18\}$ $CF = \{1, 2, 3, 6\}$ GCF = 6	
Activity Mk old edition Remarks	N.B n pg 81	(iv) The LCF is always 1	
LESSON 7 Subtopic:	Prime	factorization	
Content:	-	(b) Subscript method (c) Powers/ exponents	

Content: - Using (a) Multiplication (b) Subscript method (c) Powers/ exponents - Find number prime factorised. Examples: (i) Find the prime factors of 60. (a) By ladder (b) by factors tree 2 60 2 30 3 15 5 5 2 60 2 30 3 15 5 5 2 5 Pf 60 are (a) 2 x 2 x 3 x 5Or $\{_{21}, 2_2, 3_1, 5_1\}$ Or $2^2 x 3^1 x 5^1$

Activity MK old edition pg 82

Remarks

Lesson 8

Content:i)Finding prime factorized numberii)Finding the missing prime factors

Examples

- i) What number has been prime factorised
- ii) Prime factories and find missing factors The prime factorization f 30 is 2 x y x 5, find y

(i)	If $2 \times 3 \times y =$	30 find y	
	2 x 3 x y	=	30
	<u>6y</u>	=	<u>30</u>
	6		6
	v	=	5

1

Activity Mk old edition pg 83 Remarks

LESSON 9

Subtopic:		Multiples of numbers
Content:	-	Listing multiples.
	-	The common multiples
	-	The LCM
Examples:	(i)	List the multiples of 4 between ten and 30.
. I		$M_4 = \{4, 8/12, 16, 20, 24, 28/\dots\}$
		M_4 between 10 and 30 are
		{12, 16, 20, 24, 28}
	(ii)	Work out the LCM of 24 and 36
	(11)	(a) Using multiples
		(b) By prime factorization method
		ie (2) 24 36
		$\frac{10}{2} \frac{21}{12} \frac{30}{18} ICM - 2x 2x 2x 3x 3$
		$\frac{2}{2} \frac{12}{6} \frac{10}{9} = \frac{10}{2 \times 2 \times 2 \times 2 \times 5 \times 5}$
		$\frac{2}{3}$ $\frac{3}{3}$ $\frac{9}{9}$ -72
		(3) (3) (1) (1) (1) (1)
A		
Activity	06	
	og 86 .	
Kemarks		

LESSON 10 Subtopic: Finding LCM and GCF by prime factorization using a venn diagram Representing prime factors on the venn diagrams. Content: -Find the GCF/HCF and LCM from the venn diagram -Work out the prime factors of 30 and 36 Examples: (i) and F_{30} {2₁, 3₁, 5₁} 3 F $_{36} = \{2_1, 2_2, 3_1, 3_2\}$ Complete (ii) $F_{30} \cap F_{36} = (2_1, 3_1)$ F 36 F₃₀ 51 2_1 2_{2} 3_1 Use the venn diagram to find the: (iii) (a) GCF of 30 and 36 $GCF = F_{30} \cap F_{36} = \{2_1, 3_1\}$ $= 2 \times 3 = 6$ LCM of 30 and 36 (b) LCM = $F_{30} \cup F_{36} = (2_1, 2_2, 3_1, 3_2, 5_1)$ = $2 \times 2 \times 3 \times 3 \times 5 = 180$ Activity Mk old edition pg 86-87 Remarks **LESSON 11** Subtopic: Unknown values/ factors Content: Find the missing number (i) Find the unknown factors (ii) (iii) Work out HCF and LCM Find x and y below (i) Example: factors of y are Fx Fy {21, 22, 31, 32, 33} 2_{3} 2_{2} 32

31

y = 2 x 2 x 3 x 3 x 3

23

Factors of
$$x = (21, 22, 31, 23)$$

$$2 x 2 x 3 x 2$$

$$X = 24$$

$$GCF = Fx \cap F y = \{2_1, 2_2, 3_1\}$$

$$= 2x 2 x 3$$

$$GCF = 12$$

$$2 x 2 x 2 x 3 x 3 x 3$$

$$LCM = Fx \cup F y$$

$$= 2 x 2 x 3 x 3 x 3$$

$$LCM = 216$$
(ii) Find the unknowns
$$F_{20} \xrightarrow{2_1} y \xrightarrow{5_1} F_{30}$$

$$F20 = \{x, 21, 51\}$$

$$F20 = \{x, 21, 51\}$$

$$F30 = \{21, 51, y\}$$

$$GCF of 20 and 30$$

$$20 = x + 2 x 5$$

$$30 = 2 x 5 x y$$

$$GCF = F20 \cap F 30$$

$$20 = 10x$$

$$30 = 10y$$

$$GCF = \{21, 51\}$$

$$10 \quad 10$$

$$10 \quad 10$$

$$GCF = \{21, 51\}$$

$$2 = x$$

$$3 = y$$

$$GCF = 10$$

$$\therefore x = 22$$

$$\therefore y = 31$$

$$ICM = F20 \cup F 30$$

$$= \{21, 22, 31, 51\}$$

$$= 2 x 2 x 3 x 5$$

$$\therefore LCM = 60$$
Activity
Mk old edition pg 88-89
Remarks
$$IESSON 12$$
Subtopic: Application of GCF / LCM
Content:
- Relationship between GCF and LCM
- Other problem related to HCF/GCF
Examples:
(i) The LCM of two numbers is 144 their GCF is 12 and one

of these numbers is 48. Find the other number

LCM x GCF

Let 2^{nd} No be y 1^{st} No x 2^{nd} No =

Solution:

 $\frac{48 \text{ x y}}{48} = \frac{144 \text{ x } 42}{48}$ y = 36

(ii) What is the largest possible divisor of 24 and 36. Largest possible divisor is GCF

(2)	24	36	
(2)	12	18	
3	6	9	
	2	3	
BK 6 pgs 34 – 41			

 $2 \ge 2 \ge 3 = 12$ largest divisor = 12

Activity	'
Oxford primary MTC BK 6 pgs 34	_
Remarks	

LESSON	13
	1.

LEBBON 15						
Subtopic:	Appli	cation of I	CM			
Content:	-	Find th	e sma	llest n	umber v	which when divided by 9 and 12
		leaves				
		(a)	No 1	remai	nder?	
		(b)	Ren	nainde	er of 1?	
		(c)	Ren	nainde	er of 5?	
		~ /	Get	LCM	of 9 and	l 12 i.e
			2	9	12	$LCM = 2 \times 2 \times 3 \times 3 = 36$
		-	2	9	6	\therefore Number is LCM + RCM
		-	3	3	1	= 36 + 1 = 37
		-		1	1	
				I	I	
	(ii)	Kelvin	has a	stride	of 40cm	and his father has a stride of
		60cm.	What	is the	width of	the narrowest path that they

LCM of 40cm and 60 cm $M_{40} = \{40, 80, (120), 160, \dots\}$

can both cross in a whole number of strides?

$$M_{60} = \{60, 120, 180, \dots, 1$$

LCM = 120 \therefore The width is 120 cm

<u>.</u>

Activity - Oxford primary MTC pupils BK 6 pgs 34 - 36. Remarks

LESSON 14

Subtopic:	Worki	ng with powers of	whole numbers.		
Content:	- Find a number from powers				
	-	Express numbe	r as product of powers of a given numbers		
	-	Operation on p	owers.		
Example:	(i)	What is 7^3 .			
-		73 = 7 x 7 x 7 =	= 343		
	(ii)	Express 64 usir	ng powers of fours		
		4 64			
		4 16			
		4 4	$\therefore 64 = 4 \times 4 \times 4$		
		1	$64 = 4^3$		
	(iii)	Work out:	23 + 32 + 50		
			(2 x 2 x 2) + (3 x 3) + 1		
			8 + 9 + 1		
			= 18		
Activity					

A New MK pupils' BK 6 pgs 84 and 85. **Remarks**

LESSON 15

Subtopic:	Squa	res of nun	nbers
Content:	-	Squar	es of
		(a)	whole numbers
		(b)	fractions
		(c)	mixed fractions

Example	:: (i)	(d) decimal What is the square of 12? $12^2 = 12 \times 12 = 144$
	(ii)	Work out the square of $\frac{3}{4}$ $\begin{bmatrix} 3 \\ 4 \end{bmatrix}^2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \times \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 9 \\ 16 \end{bmatrix}$
	(iii)	Calculate the square of 1 1 ¹ / ₂ 1 ¹ / ₂ x 1 ¹ / ₂ = $\left(\frac{1 \times 2 + 1}{2}\right) \times \left(\frac{1 \times 2 + 1}{2}\right) = \frac{3 \times 3}{2} = \frac{9}{4} = 2 \cdot \frac{1}{4}$
	(iv)	Find (0.15)2 $(0.15)^2 = 15 = 15 \times 15 = 225 = 0.0225$ 100 (v) In general M x M = M ²
Activity - - Remark	The Pupils will d Exercise 4 : 37 p Mk new edition p s	to exercise 9 on pg 42 from Oxford primary MTC BK 6. g 95, 4 : 39 pg 98 and 4 : 42 pg 101 of MK BK 6. og 37

LESSON 16

Subtopic:Square roots.Content:Square roots of whole numbers.

Example: Find the square roots of $\sqrt{36}$

$$\begin{array}{cccc} 2 & 36 \\ \hline 2 & 18 \\ \hline 3 & 9 \\ \hline 3 & 3 \\ \hline 1 \\ \end{array} \begin{array}{c} \ddots & \sqrt{36} \\ \hline \end{array} = \\ \hline \sqrt{x 2 x 2 x 3 x 3} \\ \sqrt{(2 x 2) x (3 x 3)} \\ 2 x 3 \\ \hline \end{array} \\ \hline \end{array}$$

(ii) Work out
$$\sqrt{324}$$

 $2 324 \sqrt{324} = \sqrt{(2 \times 2) \times (3 \times 3) \times (3 \times 3)}$
 $2 162 \sqrt{324} = 2 \times 3 \times 3$

$$\frac{\begin{array}{c} 3 & 27 \\ \hline 3 & 9 \\ \hline 3 & 3 \\ \hline 1 \end{array} \qquad \therefore \sqrt{324} = 18$$

Activity A New MK pupils' MTC BK 6 pg 38. Remarks

LESSON 17

Subtopic:	Square	are roots of fractions				
Content:	-	Find square roots of fractions				
		(a) Proper fractions				
		(b) Mixed numbers				
		(c) Decimals				
Examples:	(i)	Work out the $\sqrt{\frac{4}{9}}$				
		$\sqrt{\frac{4}{9}} = \sqrt{\frac{2 \times 2}{\sqrt{3 \times 3}}} = \frac{2}{3}$				
		(ii) What is the square root $\sqrt{6} \frac{1}{4}$				
		$\frac{\sqrt{6} x 4 + 1}{\sqrt{4}} = \frac{\sqrt{25}}{\sqrt{4}} = \frac{\sqrt{5} x 5}{\sqrt{2}} = \frac{5}{2} 2 \frac{1}{2}$				
	(iii)	Find the square root of 1.44				

$$1.44 = \frac{144}{100} = \frac{\sqrt{144}}{\sqrt{100}} = \sqrt{\frac{12 \times 12}{10 \times 10}} = \frac{12}{10} = 1.2$$

Activity

New MK pupils BK 6 pages 39-40 **Remarks**

LESSON 18 Subtopic: Application of squares and square roots.

-	11	1 1
Content:	-	Solve problems using square
	-	Solve problems involving use of square roots.
Examples:	1.	A square garden has a length of 3 ¹ / ₂ m. What out its area

	$\int Ar dr dr$	ea of $sq = S \times S$
	$\begin{array}{c} 572 \text{ III} 572 \text{ III} 572 \text{ III} x \\ \hline 7 \text{ m} x \\ 2 \end{array}$	$\frac{7}{2} \frac{m}{2} = \frac{49}{4} m^2 = 12 \frac{1}{4} m^2$
	÷	Area = $12 \frac{1}{4} \text{ m}^2$.
(ii) If a s	equare has an area of 576.	
(a)	Calculate its side	
	Area $=$ side x side	24 = side
	$576 = S \times S$	
	$\sqrt{576} = \sqrt{S^2}$	\therefore side = 24
	2 576	
	2 288	
	2 144	
	2 72	
	$\frac{2}{2}$ 36	
	$\frac{2}{2}$ 18	
	$\frac{2}{2}$ 10	
	$\begin{array}{c c} 2 & 9 \\ \hline 2 & 2 \\ \end{array}$	
	3 3 T	
	1 = N	S2
2 X 2	$2 X 2 X 3 = \sqrt{S \times S}$	

(b) Find the perimeter of the square.

$$P = 4 x \text{ side}$$

 $4 x 24$
 $\therefore P = 96$

Activity

The Pupils will do exercise 4 : 41 and 4 : 43 pages 100 and 102. A old MK pupils' BK 6 pages 100 to 102. New mk pg 39 **Remarks**

LESSON 19.

Subtopic:	Cubes and cube roots	
Content:	- Find the cubes	
	- Find the cube root	ts

What is the cube of: 5? $5^3 = 5 \times 5 \times 5 = 125$

(ii) Find the volume of the cube below: Vol of cube = $S \times S \times S$ $V = 6 \text{ cm} \times 6 \text{ cm} \times 6 \text{ cm}$ $V = 216 \text{ cm}^3$

(iii) Work out the cube root of
(a)
$$64 = 2 \ 64 \ 3\sqrt{64} = 3\sqrt{(2 \times 2 \times 2) \times (2 \times 2 \times 2)}$$

 $2 \ 32 \ 2 \ 16 \ 2 \ 8 \ 2 \ 4 \ 2 \ 2 \ 4 \ 2 \ 2 \ 3 \sqrt{64} = 4$

Activity

The Pupils will do exercise below

(i)

- 1. Work out 2^3
- 2. Find the number of cubes in the figure:

3. Work out the volume of a cube of side.
(i) side = 4cm (ii) side = 10 cm (iii) side = 5
4. Work out the cube root of each of these numbers
(a) 8 (b) 27 (c) 64 (d) 216

LESSON 20

Subtopic:Number patterns and sequencesContent:Complete series and sequencesExamples:Find the missing number:

(a) 2, 3, 5, 7, ____ 11 is the next number (prime numbers)

(b) 4, 9, 16, 25, ____

2 x 2 3 x 3 4 x 4 5 x 5 6 x 6 (square numbers)

(d) 22, 10, 20, 14, 18, 12
-6,
$$^{+}4$$
, -6, $^{+}4$, -6
(e) $^{1}/_2$, $^{1}/_4$, $^{1}/_8$, ____

Activity

A New Mk primary MTC BK 6 pages 90 – 91. Fountain pg 49 **Remarks**

LESSON 21

Subtopic:	Puzzl	es/ magic square		
Content:	-	Dealing with puzz	eles	
	-	The magic square	s:	
Examples:	(i)	Find the missing r	numbers	
		-8 X 6 3 -5 Y W 9 2	(a) M 8 ·	agic numbers is $+5+2=15$
	(ii)	x = 15 - (9 + 5)	Y = 15 - (3 + 5)	W = 15 - (8 + 3)
		X = 15 - 14	Y = 15 - 8	W = 15 - 11
		$\mathbf{X} = 1$	Y = 7	W = 4
N.B	Vary	the squares to 16 squa	ares.	

Activity

Work on magic squares from Understanding MTC BKs 5 and 6 Understanding mtc pg 74

UNIT 5: TOPIO	C:	FRACTIONS		
LESSON 1				
Sub topic:	Opera	tions on fractions		
	Basic	operations	(i) (ii) (iii) (iv) (v)	Addition (+) Subtraction (-) Multiplication (X) Division (÷) Mixed operations (BODMAS)
Content:	(i)	Addition of sin	nple fracti	ons with different denomination
	(ii)	Addition of mix	ked numbe	rs
Examples:	(i)	Add: $\frac{2}{3} + \frac{1}{4}$	LCM 12	
			$\frac{2 \times 4}{3 \times 4}$	$-\frac{1 \times 3}{4 \times 3}$
			$\frac{8}{12}$ +	<u>3</u> 12
			<u>11</u> 12	2
	(ii)	Find the sum of	$\frac{1}{2} \frac{2}{3}$ and	2 1/4
		Solu ⁺ⁱ on:		
		$2\frac{1}{2} + 2\frac{1}{4} = (2)$	+2)+2	$+ \frac{1}{4}$ LCM 12
		5 4	Δ_{\pm} (2)	x 4 x 4) +(1 x 3)
				$\left[\frac{1}{4} \times 3\right]$
			4 + 8	3 + 3
			1	.2 12
			4 +	<u>11</u>
				12 A 1 1
				<u>4 1</u> 12
				• /

Understanding pg 85 -

LESSON 2

Sub-topic: Operation on fractions Subtraction of simple fractions with different Content: (i) denominations (ii) Subtraction of mixed numbers Subtract: $\frac{3}{4} - \frac{3}{5}$ LCM = 20 Examples: (a) $\frac{15}{20} - \frac{12}{20} = \frac{3}{20}$ Subtraction: $4\frac{1}{3}$ $1\frac{7}{8}$ (b) $\frac{13}{3} - \frac{15}{8} = \frac{104 - 45}{24}$ =<u>59</u> 24 $2_{\frac{11}{24}}$ $4 \ \frac{1}{3} \frac{-7}{8} = (4-1) + (\frac{1}{3} - \frac{7}{3}) \frac{1}{8}$ $= \frac{31}{3} - \frac{17}{8}$ $= \frac{80-21}{24}$ $=\frac{59}{24}=2\frac{11}{24}$ Activity Understanding mtc pg 87 Fountain pg 58-60 Remarks

LESSON 3 Sub-topic: Content: Examples	Additio - - (a)	on and subtraction of fractions involving word problems Addition of fractions involving word problems subtraction of fractions involving word problems A man used three quarters of his shamba to grow groundnuts, a half to grow potatoes and two thirds to grow water melons. Fin total fraction of the whole land used.	Example:
		Solutions $\frac{3}{4} + \frac{1}{2} + \frac{2}{3}$ LCM 12	Solution
		$\frac{3 \times 3}{4 \times 3} + \frac{1 \times 6}{2 \times 6} + \frac{2 \times 4}{3 \times 4}$	
		$\frac{9}{12} + \frac{6}{12} + \frac{8}{12}$	
		$\frac{23}{12} = \frac{12}{12} + \frac{11}{12} = \frac{2 \frac{11}{12}}{12}$	
	(b)	One third of the children in a school are girls. One day a quarter of the girls in the class were absent. What fraction of the girls in the school were absent on that day? Fraction girls $= \frac{1}{3}$	
		Fraction of girls absent = $\frac{1}{4}$ of $\frac{1}{3}$ = $\frac{1}{4}$ x $\frac{1}{3}$ = $\frac{1}{12}$ Ans	
Activity Trs' collection Remarks			
LESSON 4 Sub-topic:	Additi	on and subtraction	
Content:	Additi	on and subtraction by use of BODMAS	

B O D M A S - subtraction Addition Multiplication Of Brackets
Simplify: $\frac{1}{2} - \frac{2}{3} + \frac{1}{5}$
$\frac{1}{2} - \frac{2}{3} + \frac{1}{5}$ (BODMAS) Rearrange $\frac{1}{2} + \frac{1}{5} - \frac{2}{3}$ LCM 30 $\frac{(15+6)}{30} - \frac{20}{30}$ $\frac{21-20}{30}$ $\frac{1}{30}$
(b) Simplify: $1 \frac{1}{3} + \frac{3}{4} - \frac{5}{6}$ Solution $1 \frac{1}{3} + \frac{3}{4} - \frac{5}{6}$ (Use BODMAS) LCM = 12 $\frac{4}{3} + \frac{3}{4} - \frac{5}{6}$ $\frac{16 + 9 - 10}{12}$ $\frac{25 - 10}{12} = \frac{15}{12}$ $= \frac{12}{12} + \frac{3}{42}$ $1^{\frac{1}{2}}$

For more lesson notes, visit <u>www.freshteacheruganda.com</u>

Activity Fountain bk 6 pg 59. Remarks

LESSON 5

Sub-topic:	Multipli	lication of fractions		
Content.	-	Multiplication of simple fractions		
Examples: Fract		n with whole number.		
	(i)	$\frac{1}{3} \times \begin{array}{c} 12 = 1 \\ 3 \end{array} \times \begin{array}{c} 12 \\ 1 \end{array} \text{calculate } \begin{array}{c} 3 \\ 4 \end{array} \text{ of } 12 \\ \end{array}$		
		$= \frac{12}{-31} 4^{1} \qquad \frac{3}{4} \text{ of } 25 \frac{3}{4} \times \frac{12}{1}$		
		$= 9 \frac{36}{71}$		
	(b)	Fraction by fractions Multiply: 2×3 5×4 $2 \times 3 = 6 3$		
		$= \frac{3}{10} = \frac{5 \times 4}{2010}$		
	(c)	Multiply: 1×1 2 3 $- 1 \times 1 - 1 \times 1 - 1$		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Activity				

= _____4

Fountain pg 60-61 Understanding mtc pg 79-81

New Mk pg 46-47 Remarks

LESSON 5 Sub-

LESSON 5			
Sub-topic:	Operation on fractions		
Content:	Division of fractions		
	(i) Use of LCM		
	(ii) Use of reciprocal		
	Reciprocals		
	Product of a number by its reciprocal is 1.		
	What is the reciprocal of $\frac{3}{4}$?		
	Let the reciprocal of $\frac{3}{4}$ be t.		
	3 x t = 1		
	4		
=	$^{1}4 x 3t = 1 x 4$		
	$\overline{4}$		
=	$^{1}3t = 4$		
	13 3		
	t = 4		
	3		
<u>∴ R</u> e	eciprocal of $\frac{3}{4}$ is $\frac{4}{3}$		

What is the reciprocal of $2\frac{1}{4}$? Let the reciprocal of $2\frac{1}{4}$ be y. 2 ¼ x y = 1 9 x y 1 = 4 9у 1 x 4 = 4 4 $\frac{9}{9}y = \frac{4}{9}$ $Y = \frac{4}{9}$ ∴ Reciprocal of 2 ¼ is 4 9

$$1 \div \frac{1}{4} = 1 \div \frac{4}{9}$$
$$= 1 \times \frac{4}{9}$$
$$= \frac{4}{9}$$
Activity
Old edition MK pg 48

Remarks

LESSON 6

Sub-topic:	division of fractions		
Content: -	Divide fractions using reciprocals		
-	Divide fractions using LCM		
Examples:	(i) Divide $\frac{2}{3} \div 2$		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
(b)	Divide: $\underline{2} \div 2$		
	3		
	$\frac{2}{2} \div \frac{2}{1}$ LCM = 3		
	$^{13}x \stackrel{2}{} \stackrel{2}{} \stackrel{1}{} \stackrel{1}{} x \stackrel{3}{} \stackrel{1}{} 1$		
	$\begin{array}{rcl} 2 \div 6. \\ \underline{2}^1 &= & \underline{1} \end{array}$		
	6 ₃ <u>3</u>		
Activity New MK BK 6.			
Remarks			
Examples (ii)	(a) Divide: $\underline{3} \div \underline{1}$		
	4 2		

Activity New MK pg 50 Fountain pg 62- Remarks	LCM 3 ÷ 1 LCM 4 4 2 ${}^{14}x \frac{3}{4_{1}} \div \frac{1}{2_{1}}x 4^{2}$ 3 ÷ 2 3 = 1 ½ (b) Divide 2 ½ ÷ 1 ¼ LCM 2 ½ ÷ 1 ¼ $\frac{5}{2} \div \frac{5}{5}$ LCM 4 2 $\cancel{4}x \frac{5}{2} \div \frac{5}{5}x \cancel{4}^{-1}$ $2_{1} \cancel{4}_{1}$ (2 x 5) ÷ 5 10 ÷ 5 = 2 64.	Reciprocal $\frac{3}{4} \div \frac{1}{2}$ reciprocal $\frac{2}{4}$ $\frac{3}{4} \times \frac{2}{2}$ $\frac{3}{4} \times \frac{2}{1}$ $\frac{3}{4} \times \frac{2}{1} = \frac{6}{3}^{3}$ $\frac{3}{4} \times \frac{1}{1} = \frac{6}{4}^{3}$ $\frac{1}{2}$ Reciprocal $\frac{2\frac{1}{2} \div 1}{2} \div \frac{1}{4}$ $\frac{5}{2} \div \frac{5}{5}$ Reciprocal 4 $\frac{5}{2} \times \frac{4}{5}$ $\frac{20}{10} = 2$
LESSON 7 Sub-topic: Content:	Operation on fractions Mixed operations with fractions (i) Use of BODMAS B - Brac O - Of D - Divi	s kets () of sion ÷

D - Division ÷ M - Multiplication X

A - Addition +
S - Subtraction -
Examples: 1. Simplify:
$$5 - 3 + 1 \frac{1}{2}$$

Rename $1\frac{1}{2}$ to $3\frac{1}{2}$
 $5 - \left(\frac{3}{4} + \frac{3}{2}\right)$ BODMAS
 $5 - \left(\frac{3^{1}}{4^{2}} \times \frac{2^{1}}{3_{1}}\right)$
 $5 - \left(\frac{3^{1}}{4^{2}} \times \frac{2^{1}}{3_{1}}\right)$
 $5 - \frac{1}{2}$ LCM = 12
 $\frac{10 - 6}{12} = \frac{4}{12}\frac{1}{3}$
 $= \frac{1}{3}$

Activity Fountain pg 64-66 New mk pg 51 Old mk pg 113

Remarks:

Emphasis should be on the order of BODMAS

Decimals

LESSON 8

Sub-topic: Content:

Addition of decimal up to ten thousandths with carrying Addition of decimals up to ten thousandths with carrying. 1.

2.

Examples	(a) (i)	Add: 1. 5 + 0.4	(ii) 7.04 + 1.6	(ii) Add 2.4 + 0.254
	+	1.5 0.4 1.9	7.04 + 1.6 	$ \begin{array}{r} 2.4 \\ + 0.254 \\ \hline 2.654 \end{array} $
	(b) (i) Ao	dd; 1. 5 + 1.6 (ii) Add 0.09 + 0.18	(iii) Add 0.067 +0.057
		1	1	11
		1.5	0.09	0.067
		1.6 +.	0.08	+ 0.057
		3.1	0.27	0.124
Content: Examples (i) Subtract: 2.5	-Subtration - Subtration (a) 5 - 1.3 2.5 1.3 1.2	(ii) Subtract: 0.9 - 0.4 0.58	up to ten thousand up to ten thousand $\Theta - 0.4$ (iii) Subt	ths without carrying. Iths with carrying. raction $2.085 - 0.03$ 2.085 0.03 2.602
Example (b)				
(i) Subtract 2.8	- 0.9	(ii) Subtract 1.45	5-0.6 (iii) Sub	otract 2.7 – 0.098
1		0		69
2 .1	18	1 .45		2. 7 10 10
- 0.9)	<u>- 0.6</u> 0.85		0.09 8 2.60 2

Activity Understanding mtc pg 91-93 MK old Mk pg 114

LESSON 9 Subtopic: Content: Examples	Decimals Addition and subtraction of decimals (consolidated) (a) $8-5.16+2.13$ (8+2.13)=5.16				
	+	8. 00 2.13 10.13	9 10 $\frac{10.413}{-5.16} = 4.97$ $\frac{4.97}{-5.16} = 4.97$		
	(b)	7. (0.45 + 1.71)			
	_	$ \begin{array}{r} 1.71 \\ + 0.45 \\ \hline 2.16 \end{array} $	$\begin{array}{rcrcrc} 6 & 9 \\ 7. & 10 & 10 \\ - & 2. & 16 \\ \hline & 4. & 8 & 4 \end{array} = 4.84$		
	(c)	(1.306 – 1.1) + 1	.067		
	_	1. 306 1. 1 0. 206	$\begin{array}{r} 0.206 \\ + 1.067 \\ \hline 1.273 \end{array} = 1.273$		
	(c) +	3.64 + 5 - 2.42 3.64 5.00 8.64	$\begin{array}{r} 8.64 \\ - 2.42 \\ \hline 6.22 \end{array} = 6.22$		
Word problems in	nvolving	addition and subt	raction of decimals.		

Example:	(d)	Mariko bought 4 . 5 litres of milk. If 0.35 litres got spilled. How many litres were left?
	4	
	4.510	
	- 0.35	
	4.15	

4.15 litres were left.

(e) In a Ludo game. Okello scored 7. 5 points in the first round and 3. 8 points in the second round. How many points did he score altogether? 1^{st} round 7. 5 2^{nd} round + 3. 8<u>11. 3</u> He scored 11.3 points altogether.

Activity

Old edition Mk pg 115-116 Fountain pg 71 **Remarks**

LESSON 10			
Subtopic:	Decimals		
Content:	- Multipl	lication of a decimal	by decimal
	- Multiply versa.	lication of a decimal	by a whole number and vice
Example	(a) (i)	Multiply: 0.9 x 0.	5
I.	Metho	dI	Method 2
	0.9 🗲	— 1 dp	<u>9 x 5</u>
	x 0.5 🗲	— 1 dp	10 10
	4 5	-	e
	+0.0		$= \sqrt[45]{}$
	0. 45	— 2 dp	100
			= 0.45
	(a) (ii)	Multiply 1. 32 x 2.	.4
	Metho	d1	Method 2
	1. 32◄	— 2 dp	<u>132</u> x <u>24</u>
	<u>x 2.4</u> ←	— 1 dp	100 10
	528		
	+ 264		= <u>3168</u> .
	3.168	— 3 dp	1000
		I	= 3.168
(b)	Multiply:	1.4 x 25	

	Metho	d 1		Metho	d 2
		25 🔶 1	dp	<u>14</u> x	<u>25</u>
	X	<u>1.4</u>	1 dp	10	1
		10 0			
	+	25		= <u>3</u>	<u>50</u> .
		35.0	1 dp		10
				= 35	
Activity					
Old edition MK	pg 116-1	18			
Fountain pg 72					
New mk pg 58-6	50				
LESSON II	1	c 1 · 1			
Subtopic:	divisio	n of decimal	.S		
Content:	d1V1S10	n by decima	18		
F 1	Divisio	n by whole	numbers		
Example:	(a)	Divide 8 ÷	- 0.02		
	Metho			lethod 2	
	$\frac{8}{0.02}$ x	<u>100</u>	8	$\div \underline{2}$	
	0.02 X	100		100	
_	400		_	4 8 v 100	
=	2		=	$\frac{\Theta}{1} \times \frac{100}{2}$	
	Z 1				
	- 400	I	_	400	
	- 400		=		
	(b)	Divide: 0	$02 \div 8$		
	(0)	Method 1	.02 . 0		Method 2
		0.02×10^{-10}	0		$2 \div 8$
		$\frac{0.02}{8} \times \frac{10}{10}$	<u>)0</u>		$\frac{2}{100}$ 1
		0 1 10			100 1
	=	2^{1} =	1	=	2 x 1
		<u>=</u> 800	400		100 8
		400			
				=	$2^1 = 1$
					800 400
					400
Example:	(c)	Divide: 2.4	$4 \div 0.03$		
L	~ /	Method 1	1	Metho	d 2

Activity New MK pg 61- Fountain pg 73-7 Understanding p Remarks	= (d) 65 74 g 97-98	$\frac{2.4}{0.03} \times \frac{100}{100}$ ⁸⁰ $\frac{240}{3}$ $\frac{240}{3}$ Divide: 0.072 ÷ 0.8 Method 1 $\frac{0.072}{0.8} \times \frac{1000}{100}$ $\frac{72}{2}$ ⁹ = 9 $\frac{9}{800}$ ¹⁰⁰ 100 $\frac{100}{100}$	$\frac{24}{10} \div \frac{3}{100}$ $\frac{24}{10} \times \frac{100}{10_{1}}$ $\frac{24}{10_{1}} \times \frac{100}{3_{1}}$ $\equiv 80$ Method 2 $\frac{72}{12} \div \frac{8}{100}$ $\frac{72}{1000} \times \frac{10}{8_{1}}$ $= 9$ $100 \equiv 0.09$
LESSON 12 Subtopic: Content: Example:	Decima Consoli 1.	ls dation of all operation on of Work out: 0.7×0.6 0.3 Method 1 $0.7 \times 0.6 \times 100$ 0.3×100 $\frac{42}{30}^{14} = \frac{14}{10}$ = 1.4 Work out: 35 x 0.5 Method 1	decimals $\begin{vmatrix} \mathbf{Method 2} \\ \frac{7}{10} \times \frac{6}{10} \div \frac{3}{10} \\ = \frac{7}{10} \times \frac{6}{10}^2 \times \frac{10}{3}^1 \\ \frac{14}{10} = \underline{1.4} \\ \end{bmatrix}$ Method 2 34

For more lesson notes, visit <u>www.freshteacheruganda.com</u>

$\frac{35 \times 0.5}{0.05} \times \frac{100}{100}$	$\frac{35}{1} \times \frac{5}{10} \div \frac{5}{100}$
$\frac{35^{7} \times 50}{5_{1}}$	$\frac{35}{1} \times \frac{5}{10}^{1} \times \frac{100}{5}^{1}$
<u>= 350</u>	<u> </u>

Activity

Old MK pg 121 Fountain pg 64-65 Understanding pg 73 Remarks

$5.5 \div 0.25$ = Either $5.5 \times 100 = 550 = 22$ $0.25 \times 100 = 255 = 22$

There are 22 packets

<u>Method 1</u> No of packets =

 $\frac{110}{22}$

total weight Weight of one packet $\frac{55}{10} \div \quad \frac{25}{100}$ OR <u>55</u>¹¹ x 1002 10 255 22 packets =

Activity

New Mk pg 65 Old MK pg 118 Understanding mtc pg 98

Remarks

LESSON 13

Subtopic:	Decimals
Content:	Word problems involving multiplication and division of decimals.

Example: The length of one side of a square is 8.75 cm. (a) What is the perimeter of the square.

Method 1	Method 2
Perimeter of square $= 4S$	$\mathbf{P} = 4\mathbf{S}$
$= 4 \times 8.75$	= 4 x 875
	100
8.75	= 3500
X 4	100
35.00	
The perimeter is 35 cm	= 35 cm

A parcel weighing 5.5 kg contains packets of salt. How (b) many packets of salt are in the parcel if each packet weighs 0.25 kg.

	Numeracy	Fractions	 Multiplication of fractions by fractions Division of fractions Mixed operation on fraction Operation on decimals (x, +, -, ÷) Mixed operation on decimals Application of fractions Ratios and proportion 		
			 ratios and ratios to fractions Increasing in ratios Finding the ratio of increase Decrease quantity in ratios Finding the ratio of increase Sharing in ratios Proportions Consistent Direct/simple proportionality Indirect/inverse proportionality Percentages Changing fraction in percentages 		
TERM II MTC NOTES TOPICAL BREAKDOWN FOR TERM II Theme Topic Sub topic			 Changing ratios to percentages and vice versa Increasing and decreasing in percentages Finding the percentages increase and decrease Loss and profit Percentage loss and profit Simple interest Solving word problems involving simple interest 		
	Interpretation	Data	Collection of data from		
---	----------------	----------	---	---	--
	of groups and	handling	different sources		
	data		 Presentation of data; 		
			- Tables		
			- Line graphs		
			- Bar graphs		
			- Pie charts		
			Simple statistics		
			- Finding mode		
			- Finding mean		
			- Finding median		
			- Finding range		
			 Finding modal frequency 		
			Probability		
			Application of probability		
	Measurements	Money	Naming currency for different		
		-	countries		
			Finding number of notes in		
			bundles		
			Exchange rates		
			Conversion of currency		
			Shopping		
			Shopping bills		
			Finding discounts		
		Distance			
		time and	Duration		
		speed	Conversion of time (hours		
			minutes and seconds)		
			Changing from 12 hrs to 24		
			hrs		
			Finding time when given		
			sneed and distance		
			Distance		
Į			Finding distance when speed		
			and time are given		
			 Speed 	1	

	 Finding speed when given distance and time Changing km/hr to m/s and vice versa Distance time graphs Interpretation of distance time graphs Time tables. 			
TOPIC :	RATIOS AND PROPORTIONS			
LESSON 14 Subtopic: Content: Examples: <u>Mass fin</u> Mass se	Ratios (i) Form rations Rations are away of comparing similar quantities. 4kg and $5kg\frac{4kg}{cond quantity} = \frac{4}{5}Ration = 4:5$			
(b)	Express 40cm to 2m as a ratio. (c) Write Compare quantities 40 cm to 2m LCM Must be in same units $\frac{1}{3} \times \frac{1}{3}$ 1m = 100 cm $\frac{3}{3}$ 1 2 m = 2 x 10 cm = 200 cm	te 1 to 3 M = 12 $x \frac{12}{4}$ 4:3	1 as a 4 of frac : <u>1</u> x 4 ₁	ratio ctions 12 ³
Ration	$\begin{array}{rcl} 40 \text{ cm to } 200 \text{ cm} & \underline{\text{ratio}} \\ \hline 40 & \vdots & \underline{200'} \\ 10 & 10' & \\ \hline 4 & \vdots & \underline{20} \\ 4 & 4 & \\ \hline 1 \vdots 5 & \end{array}$	<u>04:3</u>		
Activity New MK pg 66 Remarks				

Subtopic: Content: Examples:	Rations (i) (ii) (iii) (a)	Expressing rations as fractions Expressing fractions as ratios Expressing quantities as ratios Express 1 : 2 as a fraction Solution $1:2 = \frac{1}{2 \text{ Ans}}$
	(b)	Express 1 as a ratio 3 $1 = \underline{1:3 \text{ Ans}}{3}$
<u>NOTE</u> :	(c) Ratios n	Henry has 12 books and John has 20 books. What is the ratio of Henry's books to John's books? Solution Henry's to John's 12 to 20 $\frac{12}{4}^{3}$: $\frac{20}{4}^{5}$ $\frac{3:5}{5}$ must be simplified to its lowest terms
Activity New MK pg 67		
Remarks		
LESSON 16 Subtopic: Content: Examples:	Ratios Sharing (i)	in ratios John and Mary share 27 sweets in the ratio 4 : 5. How many sweets does each get? Ratios: John : Mary 4 : 5 John's share: $\frac{4}{9}_{1}$ x $\frac{27}{7}^{3}$ sweets $\frac{9}{1}_{1}$

12 sweets

A Man and his wife had 200 kg of coffee. They decided to (ii) share it in a ratio of 7 : 3 respectively. How many kg did the man get? (i) Μ : W 3 7 : Total ratio = 7 + 3 = 10Man's share 7 x 200 kg 10 = 140 kgHow many kg did the wife get? (ii) <u>3</u> x 200 OR 200 10 - 140 6<u>0 kg</u> 60 kg Example: (iii) A sum of shs 30000 was shared by three brothers Amos, Andrew and Allan in a ratio of 1:2:3 respectively. How much did each get? Total ratio = 1 + 2 + 3= 6 : Allan Ratios by names: Amos Andrew : Ratio 2 3 1 : : 5000 Amos = $1 \times 30,000$ 6 1 <u>= Shs 5000</u> 5000 Andrew = $2 \times 30,000$ **6**₁ = Shs 10000 5000 Allan = $\frac{3}{6}$ x $\frac{30,000}{1}$

<u>= Shs 15000</u>

Activity fountain pg 80-81/ old MK pg 133-135 Remarks

LESSON 17 Subtopic:

Content:

Example:

Ratios Finding numbers when ratios are given The ratio of boys to girls in a class is 1 : 2. If there are 14 boys, how many pupils are in the class? **Solution**

42

: There are 42 pupils in the class

=

Expressing ratios in terms of t.

В	G	Total	t = 14
t	2t	3t	Total = 3t
14			$= 3 \mathrm{x} \mathrm{t}$
			= 3 x t
			$= 3 \times 14$

Activity

Old MK pg 135

LESSON 18

Subtopic:	Ratios	
Content:	-	Increasing in a given ratio
	-	Decreasing in a given ratio
Examples:	(a)	The prize of an article is increased from shs 1200 in a ratio
-		3 : 2. Find the new prize.
		Solution.
		<u>3</u> x 1200 600
		21
		= 1800/=
	(b)	The prize of an article costing shs 2500 was reduced in the
		ratio 5 : 8. Find the new prize.
		Solution
		3145
		<u>5</u> x 25 000

8 1

<u>Shs 15625</u>

Activity Old MK pg 129-131 Fountain pg 79-80

LESSON 19		
Subtopic:	Rations	
Content:	-	Finding the ratio of increase
	-	Finding the ratio of decrease
Examples:	(a)	A man's salary was shs 10000. it has been increased to shs 12000 in what ratio has it increased ?
		New salary $=$ shs 12000
		Old salary = shs 10000
		6
		Increased ratio = $\frac{12000}{12000}$
		10 000
		5
		Ratio increased = $6:5$
	(b)	A bag had 40 sweets, 12 more sweets were added.
		(i) How many sweets are in the bag now?
		40 + 12 = 52 sweets
		(ii) In what ratio have the sweets increased
		Increase in ratio = New No
		Old No
		= 52 ¹³
		$\frac{10}{40}$ 10
		Ratio increase = $13:10$
Content:	Finding	the ratio of decrease
Example:	The nur	nber of pupils in a class has decreased from 40 to 35.
	In what	ratio has the number decreased?
	New N	0.35
	Old No	40
	Decreas	re in ratio = New No
	Deereu	Old No
		$- 25^{7}$
		- <u>55</u> 40 °
	Ratio of	f decrease 7 · 8
	10000	

A school had 1200 pupils. This year the number has decreased to 1000 pupils. In what ratio has the number decreased?

New No = 1000 Old No = 1200 Increase = New No Old No 5 = $\frac{10 \ 90}{12 \ 90}$ 6 Ratio of decrease 5 : 6

Activity

Old MK pg 132

Remarks

LESSON 19					
Subtopic:	Ratios				
Content: Application of ratios in solving daily life situations					
Examples:	Mary and John have oranges in the ratio of 2 : 3 respectively. If				
-	Mary has 10 oranges, how many oranges does John have?				
	Solution				
	Mary to John				
	2 : 3				
Mary's	branges 10				
2 parts 1	represents 10 oranges				
1 part re					
1	$\frac{1}{2}$				
3 part re	epresents 10^5 x 3 oranges				
1	$\frac{1}{2}$				
	= 5 oranges				
Activity					
Old MK pg 135					
Remarks					

LESSON 20

Subtopic:	Propo	rtions	
Content:	(i)	Direct proportions	
	(ii)	Constant proportionali	ty
Example	(i)	One pen costs 200/=. V	What is the cost of 5 pens?
	Meth	od 1	New ratio : Old ratio
	1 pen	costs 200/=	5 : 1
	∴ 5 p	ens cost (200 x 5)/=	? : 200
		= 1000/=	1 part = 200
			5 parts = $(200 \text{ x } 5) \neq 1000 \neq$
Example	(b)	4 pens cost 2000/=. WI	hat is the cost of 7 pens?
		4 pens cost 2000/=	New : old 1 part = 2000
		500	4
	1 pen	costs <u>2000</u> = 500	
		4	7 : 4
	<u>7 pens</u>	$s \cos 500 \ge 7 = 3500/=$? : 2000 7 parts = 500 x 7 4 parts = 2000 $= 3500/=$
Example	(c)	1800/= can buy 2 kg c	of sugar. How many kg of sugar can
		one get with 3600/=?	
		1800/= can buy 2 kg	
		$1/= \operatorname{can} \operatorname{buy} \left(\begin{array}{c} \underline{2} \\ 1800 \end{array} \right) $ k	ġ
	.:. 360	$\frac{2}{1800} \times \frac{2}{1800} \times \frac{3600}{1800}$	$^{2} = 4$ kg of sugar
Example	(d)	In constant proportiona same proportion as the car in a given distance, and takes the same tim same distance:	ality, one quantity increases in the other. E.g With a moving body, or , it takes 2 hours to carry 30 people, e to carry 10 people through the
Activity		,	
Fountain pg 8	2-83		
Old MK pg 13	36-137		
Remarks			

LESSON 21					
Subtopic:	Proport	ions			
Content	Indirect	/ Inverse proportion			
Example	(a)	3 men can do a piece of work in 6 days. How long will 9			
		men take to do the same piece of work at the same rate?			
		MEN DAYS			
		3 men take 6 days			
		1 man takes (6×3) days			
		9 men take $6^2 \times 3^1 = 2$ days			
		<u>-93</u>			
	(h)	2 children can dig a garden in 8 days. How many children			
	(0)	will dig the same garden in 4 days?			
		DAYS CHILDREN			
		In 8 days it requires 2 children			
		In 1 day it requires (2×8) children			
		In 4 days it requires (2×8) children			
		$\left(\frac{2\pi\sigma}{4}\right)^{-1} = 1$ emilier			
Activity Fountain pg 82-8 New MK pg 71	(c) 33	A car moving at a speed of 80km/hr takes 3 hours to cover a certain journey. How long will the car take if it moves at a speed of 120km/hr for the same journey? SPEED TIME At 80km/hr the car takes 3 hours At 1/km/hr the car takes (3×80) hrs \therefore At 120km/hr the car take $\frac{3^1 \times 80^2}{120} = 2$ hrs $\frac{120}{40}$			
Remarks					
LESSON 22					
Subtopic:	Percent	ages			
Content:	-	Meaning of percentage			
	-	percentage as fractions			
	-	Fractions as percentages			

Fractions as percentages

Examples:

Express as fractions (a) 5% – (i) (a)

(a)	5 %	=	<u>5</u>	=	<u>1</u>
			100		20
(b)	15%	=	<u>15</u>	=	<u>3</u>
			100		20
(c)	33 ¹ / ₃ %	$= \int 100$	$(\underline{0}) = ($	<u>100</u> ÷	100
		L 3	J	. 3	1 J
	=	<u>(100</u> x	<u>ו (1</u>	100	= <u>1</u>
		3	100	300	3
			-		

(ii) Fractions as percentages
(a)
$$\frac{4}{5} = \left(\frac{4}{5} \times 100\right) \% = \frac{400}{5} \% = 80 \%$$

(b) $\frac{2}{3} = \left(\frac{2}{3} \times 10^\circ\right) \% = \frac{200}{3} \% = 66^{2/3} \%$

Activity New MK pg 72-74 Understanding mtc pg 113 Remarks

LESSON23

Subtopic:	Decimals as percentages.			
Content: -	Express decimals as percentages			
-	Change	Change percentages to decimal		
Examples:	(i) Ū	Convert 0.6 to percentage		
1		0.6 = 6		
		10		
		$6 \times 100\% = 6 \times 100\% = 600\% = 60\%$		
		10 10 10		
	(ii)	What is 2.8 as a percentage?		
		2.8 = 28		
		$()^{10} ()$		
		$28 \times 100 \% = 28 \times 100 \% = 28\%$		
	l	$\begin{bmatrix} 10 \end{bmatrix} \begin{bmatrix} 10 & 1 \end{bmatrix}$		

Express 0.014 as percentage (iii)

41

$$0.014 = \underline{14} \\ \underbrace{\left(\underline{14} \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1.4 \%$$

(iv) Change 2.5% to decimal $2.5 = \begin{bmatrix} 25\\ 100 \end{bmatrix} \% = \begin{bmatrix} 25\\ 100 \end{bmatrix} = \frac{25}{100} \times \frac{1}{100}$ $\frac{25}{1000} = 0.0025$

LESSON 24

Subtopic: Ratios as percentages.

Content:	-	Express ratios as fraction
	-	Change ratios to percentages
	-	Percentages as ratios
Examples:	(i)	Express the following as percentages
-		(a) 1:2
		$1:2 = 1 \times 100 \% = 100 \% = 50\%$
		$\overline{2}$ $\overline{2}$

(b)
$$3:8 = \frac{3}{8}$$

$$\therefore \ \frac{3}{8} \ x \ 100 \ \% \ = \ \frac{300}{8} \ \% \ = \ 37^{4} / _{8} \% \ = \ 37 \ \frac{1}{2} \ \%$$

(ii) Percentage as ratios e.g Express 60% as a ratio $60\% = \frac{60}{100} = \frac{6}{5} = \frac{3}{5}$ 3.5 $\therefore 60\% = 3:5$

Activity Understanding mtc pg 115-116 Old MK pg 145 New MK pg 75 The **Remarks**

LESSON 25

Subtopic: Content: Example:

Find pa	arts of percentages						
Find pa	Find part represented by a given percentage						
(a)	If 80% of a class are boys						
	What percentage	e are girls	5				
	Class =	100%					
	Boys =	80%					
	Girls =	(100 –	80) %				
	Girls =	20%					
(b)	If a man covers	30% of tl	he journey by car and 50% by bus.				
	What percentag	e of the jo	ourney is left?				
	Total journey	=	100%				
	Covered	=	(30 + 50) % = 80%				
	Journey left	=	100% - 80%				
		=	20%				

Activity

Understanding mtc pg 117 Remarks

LESSON26

Subtopic: Content:	Quantities as percentages expressing quantities as percentages.	
Examples: A	(i) There are 40 goats on a farm and 15 are sold. Find the	
-	% age number of goats.	
	(a) sold = $15 \text{ out } 40 = \underline{15}$	
	$\left(\frac{15}{40} \times 100\right) \% = \frac{1500}{40} = 37 \frac{1}{2} \%$	
	(b) not sold: = 40 1-15 = 25 (25×100) % = 2500 = 62 ½ %	
	Ĺ	42

What is	20%	of sh	2500/-	

20 % of 2500

40

<u>20 </u>x 2500 = 100 20 x 25 sh 500 =

40

Activity

Examples: B

New MK pg 77 Old MK pg 150 Understanding mtc pg 117 Remarks

(i)

LESSON 27

Subtopic: Content: Examples:	Expressin Find one (i)	ng a quai quantity In a scho (a)	ntity as p as perce ool of 400 Express <u>boys</u> school	ercen entage 0 pupi the b	tage of a ils. 1 oys <u>300</u> 4 00	e of the of another g Boys are as a perc <u>)</u> x 1 00 %	ther given quantity 30 of the tota entage of the = 300% 4	ll school = 75%
		(b)	Express $\frac{1 \text{ kg}}{500 \text{ g}} =$ 1 kg	500g 100 =	as a Og	a percenta 500g 1000g	age of 1 kg	
			In perce <u>500</u> x 1000	ntage 100 %	6	=	50%	
Activity Understanding m	tc pg 117							

Remarks

LESSON	28	

LESSON	28	
LESSON	28	

Subtopio

Subtopic: Content:	Sharing quantities using percentage Share quantities using given percentages.				
Examples:	(a)	(a) If a school has 400 pupils, 30% are boy			30% are boys
		HOW IN2	iny boys	are mere	In the school?
		School	=	400 pup	ils
		Boys	=	30% of	total
		Number	of boys	=	30% of 400
			<u>30</u> x 40	00	
			100	=	120 boys

How many are girls? (b) No of girls = (400 - 120)= 280

Activity

Old MK pg 151 Remarks

LESSON 29

Subtopic:	Algebra in percentages
Content:	Forming and solving equations involving percentages
Examples:	(i) If 10% of a number is 40. find its number
	Let this number be x.
	But 10% of $x = 40$
	10 x X = 40
	100
	10X x 10 0
	100 =
	10 x x 10 0
	10 1 0
	$\underline{\mathbf{X}} = 400$

(ii)	If 20% of the school are girls. there are 35 girls in the school. How
	many pupils are there in the school.

Method 1	method II
Let the total $=$ y	If 20% of the number $= 35$
20 x y = 35	1 % of the number = 35
100	20
2y = 35	100% of the number $= 15$
10	
2y = 35 = 35 = 10	$35 \ge 100 = 35 \ge 5$
$\overline{2}$	$\overline{20}$
2 y = 350	$35 \ge 100 = 35 \ge 5$
$\frac{1}{2}$ $\frac{1}{2}$	20
Y = 175 pupils	The number $= 175$

Activity

Olf MK pg 152-153 Remarks

LESSON 28					
Subtopic:	Increa	ase in percentages			
Content:	(i)	Increase in and decrease in percentage			
	(ii)	Word problems involving increase in percentages			
Examples.	(i)	Increase 800 by 5%			
		(100% + given %) of old value			
		(100% + 5%) of 800			
		105% of 800 = 105 x 800			
		100			
		= 840			
	(ii)	The number of children in a school of last year was 400.			

- this year the number increased by 15%. What is the number of pupils in the school this year? New number = (100% + 15%) of original number = $115 \ge 400$
 - 100 115 x 4

=

<u>New number = 460 pupils.</u>

Activity Fountain pg 85 Understanding mtc pg 121 Remarks

LESSON 29

Subtopic: Content:	Decrease in percentage Decrease in percentage				
Examples:	(i)	Decrease 900 litres of water by 10% (100 - 10)% of original value 90% of 900 = $\frac{90}{20} \times 90 = 810$ litres 100			
	(ii)	Byansi had 180 cows. He sold 15% of them. How many cows remained $(100 = 15)\% = 85\%$			

85% of 180 cows = $\frac{85}{100}$ x 180 = 153 cow

: 153 cows remained

(iii) A man's salary is \$800. How much will his salary be if it is cut by 12 ^{1/2} % (100 - 15) % = 85% Method 87 ^{1/2} % of 800 = (175×1) $175 \times 800 = 1400$ = 700 200 2 = \$700

Activity Ne Mk pg 80 Old MK pg 133-136 Fountain pg 85 LESSON 30 Subtopic: Percentage pro

Percentage profit / lossFind the percentage profit.

Content:

Find the percentage loss. -A trader bought 1600/= and sold it at 2000/= (i) Find the profit he made (a) Profit = Sp - Cp(2000 - 1600) = \therefore profit = 400/=(b) Work out the percentage profit % age profit = profit x 100% C. price $\left(\frac{400}{1600} \times 100\right)\%$ = \therefore profit = 25% (ii) Mulema bought a goat at 35,000= and sold it at sh 32,000= Find the loss. (a) Cost price – selling price Loss = 35000 - 32000 700/= Calculate the percentage loss (b) $\% \text{ loss} = (\text{loss x 100\%}) = \underline{700} \times 100\% = 20\%$ 350 c.p \therefore Loss = 20% Fountain pg 86-87 Understanding pg 123-124

LESSON 31

Activity

Remarks

Example:

Subtopic:	Simple interest and amount				
Content:	- (Calculate the s	simple interest with emphasis of	on time in	
	(i) years			
	(ii) mont	hs		
	S	S.I =	principal x time x rate i.e	РхТх <u>R</u>	
		=	15 00 x 3 x <u>8</u>		

100 3,600/= S.I =

Work out the simple interest offered to Tom who deposited (ii) 48000/= in a bank at an interest rate of 15% for 6 months. S.I = P x T x R i.e P = 48000/=

 $T = 6 \text{ months} = \frac{6}{12}$ R = 15 % = 15240 48000 x <u>6</u>¹ x <u>15</u> 100 $\frac{12}{2}$ 100 240 x 15 S.I = 3600/=

Find the simple interest on 12000/ at a rate of 10% per year (iii) for $2\frac{1}{2}$ years.

(a)
$$S.I = P \times T \times \underline{R} = 12000 \times 2\frac{1}{2} \times \underline{10}$$

 $= 600$
 $1200 \times 5 \times 1$
 $2 = SI - 600 \times 5 = 3000/=$
(b) How much money will it be after $2\frac{1}{2}$ years
Amount = $SI + P = 12000$
 $-\frac{+3000}{15,000}$

Activity Fountain pg 88 New Mk pg 83 Understanding pg 126-127 Remarks

Exercise	e 01	Revision questions on fractions
1.	Change	$\frac{5}{2}$ to a mixed number.
2.	What is	$1\frac{1}{2}$ as an improper fraction.
3.	(a)	Reduce $\frac{6}{9}$ to its lowest terms.
	(b)	Reduce $\underline{48}$ to its lowest terms
		1

For more lesson notes, visit www.freshteacheruganda.com

		108						
4.	Change	(a) $\frac{3}{4}$ to a decin	nal fractio	n (b) 2 ¹ / ₂	4 to a	decii	mal f	fraction.
5.	Convert	(a) 0.25 to a co	mmon fra	ction				
	(b)	1.25 to a comm	non fractio	on.				
6.	Change	$^{2}/_{3}$ to a decimal	fractions					
7.	What is	0.333-as a con	nmon fra	ctions				
8.	Change	(a) 0.3636	(b)	0.2727	7 to co	mmo	on fr	actions.
9.	Write (a	a) 0.122	(b)	0.2455	55 t	o cor	nmo	n fractions
10.	Arrange	the following f	ractions in	n ascendi	ng ord	ler.		
	(a)	<u>1</u> , <u>1</u> , <u>1</u> , <u>1</u>		(b)	<u>3</u> ,	<u>5</u>	<u>1</u>	<u>2</u>
		4 6 2 3			5	6	5	3
11.	Arrange	the following f	ractions in	n descenc	ling of	rder.		
	(a)	<u>2, 5, 5</u> ,		(b)	<u>3</u> ,	<u>2</u>	<u>1</u>	
		5 12 6			4	3	6	
10	A 11	() 2	1		1 2		2 1/	
12.	Add:	(a) $\frac{3}{8}$ +	$\frac{1}{4}$	(b)	1 -	1/2 + 2	2 1/4	
13.	(a)	What is the sur	n of a qua	arter and	a third	1?		
	<u>`</u>		1					
	Moses b	ought a half litr	e of milk	and later	bougl	ht thi	ree q	uarter litres of milk
	Moses b because	ought a half litr the milk was no	e of milk ot enough	and later . How m	bougl uch m	ht thr ilk di	ree q id he	uarter litres of milk buy altogether?
Evonoi	Moses b because	the milk was no	e of milk ot enough	and later . How m	bougl uch mi	ht thr ilk di	ree q id he	uarter litres of milk buy altogether?
Exerci	Moses b because se 02	bought a half litr the milk was no Revision Exer	e of milk ot enough. cises on l	and later . How mu F ractions	bougl uch mi	ht thr ilk di	ree q id he	uarter litres of milk buy altogether?
Exerci	Moses b because se 02 Subtract	bought a half litr the milk was no Revision Exer t: (a)	re of milk ot enough r cises on I 1 -	and later . How m F ractions 1	bougl uch mi s (b)	ht thr ilk di 2	ree q id he	uarter litres of milk buy altogether?
Exerci 1.	Moses b because se 02 Subtract	bought a half litr the milk was no Revision Exer t: (a)	The of milk of enough the creates on \mathbf{I} $\frac{1}{2}$ -	and later . How mu F ractions <u>1</u> 4	bougl uch mi s (b) (c)	ht thr ilk di 2	ree q id he $\frac{1}{2}$ - 1	uarter litres of milk buy altogether? 1 ³ ⁄ ₄
Exerci 1.	Moses b because se 02 Subtract	bought a half litr the milk was no Revision Exer t: (a) (c)	re of milk ot enough. rcises on I $\frac{1}{2}$ - $\frac{5}{2}$ - $\frac{3}{2}$	and later . How mu F ractions <u>1</u> 4	bougl uch mi s (b) (c) (d)	ht thr ilk di 2 3 ¹ /4	ree q id he $\frac{1}{2}$ - 1	1 ³ / ₄ 1 ³ / ₄ 1 ² / ₃
Exerci 1.	Moses b because se 02 Subtract	ought a half litr the milk was no Revision Exer t: (a) (c)	re of milk ot enough rcises on I $\frac{1}{2}$ - $\frac{5}{6}$ - $\frac{3}{8}$	and later . How mu Fractions 1 4	bougl uch mi s (b) (c) (d)	ht thr ilk di 2 3 ¹ /4	$\frac{1}{2}$ - 1	1 ³ / ₄ 1 ³ / ₄ 1 ² / ₃
Exerci 1. 2.	Moses b because se 02 Subtract (a)	wought a half litr the milk was no Revision Exer t: (a) (c) What is the dif	re of milk ot enough rcises on I $\frac{1}{2}$ - $\frac{5}{6}$ - $\frac{3}{8}$ if erence be	and later . How muture $\mathbf{Fractions}$ $\frac{1}{4}$	bough uch mi s (b) (c) (d) nree –	ht thr ilk di 2 3 ¹ /4 quar	ters a ree q id he	uarter litres of milk buy altogether? 1 ³ / ₄ - ³ / ₄ 1 2/3 and a half
Exerci 1. 2.	Moses b because se 02 Subtract (a) (b)	Revision Exer the milk was no Revision Exer t: (a) (c) What is the dif Subtract a quar	re of milk ot enough rcises on I $\frac{1}{2}$ - $\frac{5}{6}$ - $\frac{3}{8}$ if erence be reter from $\frac{1}{2}$	and later . How mut Fractions $\frac{1}{4}$ etween the $\frac{1}{2}$	bougl uch mi s (b) (c) (d) nree –	ht thr ilk di 2 3 ¹ /4 quar	ters a ters a term $ree q$	1 ³ / ₄ 1 ³ / ₄ 1 ² / ₃ and a half
Exerci 1. 2. 3.	Moses b because se 02 Subtract (a) (b) A farme	Revision Exer (a) (c) What is the dif Subtract a quar r uses a half of	re of milk ot enough rcises on I $\frac{1}{2}$ - $\frac{5}{6}$ - $\frac{3}{8}$ ference be rter from !	and later . How mut Fractions $\frac{1}{4}$ etween th $\frac{1}{2}$ by a for ton	bougl uch mi s (b) (c) (d) nree – natoes,	ht thr ilk di 2 3 $\frac{1}{4}$ quar , $\frac{2}{3}$ t	$\frac{1}{2}$ - $\frac{1}{2}$ - $\frac{1}{2}$ ters at co group of the second	1 ³ / ₄ - ³ / ₄ 1 2/3 and a half ow onions
Exerci 1. 2. 3.	Moses b because se 02 Subtract (a) (b) A farme (a)	Revision Exer (c) What is the dif Subtract a quar r uses a half of How much lan	re of milk ot enough. rcises on I $\frac{1}{2} - \frac{5}{6} - \frac{3}{8}$ ference be rter from $\frac{1}{9}$ his shamb d does he	and later . How mut Fractions $\frac{1}{4}$ etween th $\frac{1}{2}$ ba for ton use for f	bougl uch mi s (b) (c) (d) nree – natoes, armin	ht thr ilk di 2 $3 \sqrt[1]{4}$ quar $\frac{2}{3} t$	$\frac{1}{2}$ - $\frac{1}{2}$ - $\frac{1}{2}$ ters at the formula of the second sec	uarter litres of milk buy altogether? 1 ³ / ₄ - ³ / ₄ 1 2/3 and a half ow onions
Exerci 1. 2. 3.	Moses b because se 02 Subtract (a) (b) A farme (a) (b)	Revision Exer the milk was no Revision Exer t: (a) (c) What is the diff Subtract a quar r uses a half of How much lan How much lan	re of milk ot enough. rcises on I $\frac{1}{2}$ - $\frac{5}{6}$ - $\frac{3}{8}$ ference be rter from 9 his shamb d does he d remaine	and later . How mut Fractions $\frac{1}{4}$ etween the $\frac{1}{2}$ ba for tom use for f ed unused	bougl uch mi s (b) (c) (d) nree – natoes, armin	ht thr ilk di 2 $3 \frac{1}{4}$ quar $p^{2}/3$ t g?	$\frac{1}{2}$ - $\frac{1}{2}$ - $\frac{1}{2}$ - $\frac{1}{2}$ ters at the constant of the second seco	1 ³ / ₄ - ³ / ₄ 1 2/3 and a half ow onions
Exerci 1. 2. 3. 4.	Moses b because se 02 Subtract (a) (b) A farme (a) (b) A quarte	Revision Exer (a) (c) What is the dif Subtract a quar r uses a half of How much lan How much lan er of the pupils i	re of milk ot enough. rcises on I $\frac{1}{2}$ - $\frac{5}{6}$ - $\frac{3}{6}$ ference be rter from ! his shamb d does he d remaine in my class	and later . How muture Fractions $\frac{1}{4}$ etween the ba for ton use for f ed unused is are girl	bougl uch mi s (b) (c) (d) nree – natoes, armin 1? s. one	ht thr ilk di 2 3 $\frac{1}{4}$ quar , $\frac{2}{3}$ t g? day	ree q id he $\frac{1}{2} - 1$ ters : to gro	uarter litres of milk buy altogether? 1 ³ / ₄ - ³ / ₄ 1 2/3 and a half ow onions f the girls number
Exerci 1. 2. 3. 4.	Moses b because se 02 Subtract (a) (b) A farme (a) (b) A quarte didn't at	Revision Exer (c) What is the dif Subtract a quar r uses a half of How much lan How much lan er of the pupils i ttend lessons. V	re of milk ot enough rcises on I $\frac{1}{2}$ - $\frac{5}{6}$ - $\frac{3}{8}$ ference be rter from 9 his shamb d does he d remaine in my class What fraction	and later . How muture Fractions $\frac{1}{4}$ etween the $\frac{1}{2}$ wa for tom use for f ed unused is are girl ion of th	bougl uch mi s (b) (c) (d) nree – natoes, armin l? s. one e girls	ht thr ilk di 2 3 ¹ /4 quar , ² / ₃ t g? day vas	ree q id he $\frac{1}{2} - 1$ ters a to gro $\frac{1}{2}$ of abso	uarter litres of milk buy altogether? 1 ³ / ₄ - ³ / ₄ 1 2/3 and a half ow onions E the girls number ent.
Exerci 1. 2. 3. 4. 5.	Moses b because se 02 Subtract (a) (b) A farme (a) (b) A quarte didn't at Simplify	Revision Exer (a) (c) What is the dif Subtract a quar r uses a half of How much lan How much lan er of the pupils i ttend lessons. W y: (a)	re of milk ot enough rcises on I $\frac{1}{2}$ - $\frac{5}{6}$ - $\frac{3}{8}$ ference be rter from 9 his shamb d does he d remaine in my class What fracti 1 -	and later . How muture Fractions $\frac{1}{4}$ etween the $\frac{1}{2}$ a for tom use for f use for f ed unused is are girl ion of th $\frac{1}{4}$ + $\frac{2}{2}$	bougl uch mi s (b) (c) (d) nree – natoes, armin l? s. one e girls	ht thr ilk di 2 3 $\frac{1}{4}$ quar $\frac{2}{3}$ $\frac{2}{3}$ $\frac{1}{4}$ quar $\frac{2}{3}$ $\frac{1}{4}$ quar $\frac{2}{3}$ $\frac{1}{4}$ $\frac{2}{3}$ $\frac{1}{4}$ $\frac{2}{3}$ $\frac{1}{4}$ $\frac{2}{3}$ $\frac{1}{4}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{1}{4}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{1}{4}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{1}{4}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{1}{4}$ $\frac{2}{3}$ \frac	ree q id he $\frac{1}{2} - 1$ ters a to gro $\frac{1}{2}$ of absec (b)	uarter litres of milk buy altogether? $1\frac{3}{4}$ $-\frac{3}{4}$ $1\frac{2}{3}$ and a half ow onions \vec{c} the girls number ent. $\underline{2} + \underline{1} - \underline{2}$

Simplify:
(a)
$$\frac{1}{4} - \frac{1}{2} + \frac{2}{3}$$

(c) $\frac{1}{3} + \frac{1}{6} + \frac{4}{4}$

6. Find the value of $2\frac{1}{4} - \frac{2}{3} - \frac{5}{6}$

7. Work out (a) $4 \div \frac{1}{3}$ (b) $\frac{3}{8} \div 6$

- 8. Simplify: (a) $\frac{3}{4} \div \frac{3}{5}$ (b) $3^{1/8} \div 3^{3/4}$
- 9. Work out $4^{1}/_{5} \div (1^{1}/_{6} + 2^{1}/_{3})$
- 10. Simplify: $(2\frac{1}{2} + \frac{5}{6}) \div 1\frac{2}{3}$
- 11. Find the value of $1 \frac{1}{2} 2 \frac{1}{3} + 1 \frac{1}{4}$
- 12. Work out (a) $\frac{1}{2} + \frac{1}{4} \div \frac{1}{3}$ (c) $\frac{5}{6} \div \frac{2}{3} - \frac{1}{2} \times \frac{1}{3}$ (b) $\frac{2}{3} - \frac{1}{2} \circ \frac{1}{3}$ (d) $\frac{3}{4} \circ \frac{1}{4} - \frac{1}{5} \div \frac{1}{2}$ (e) $\frac{1}{3} \div \frac{1}{2} \circ \frac{1}{3}$
- 13. A club spent a quarter of its earnings and saved the rest. What fraction was saved?

Exercise 03 Revision Exercise on Fractions

- What is the reciprocal of (a) 1. 2? (c) y? (e) 0.5? <u>3</u>? (d) $1 \frac{1}{2}$? (b) 5 2. Use the reciprocal method and work out: (b) $1^{1}/_{3} \div 2^{1}/_{3}$ (a) <u>3</u> ÷ <u>1</u> 4 4 3. Use the LCM method and simplify: (b) $\frac{3}{5} \div \frac{1}{10}$ 2 ¹/₂ ÷ 1 ¹/₄ (a) 4. How many quarter litre bottles can be got from 5 litres? 5. A sixth of my salary is 50,000/=. How much is my salary? 6.
 - 5. I spent 20,000/= out of my salary amounting to 40,000/=. What fraction of my salary did I spend?

(c) 0.05 + 22.57. Add: (a) 1.5 + 0.6(b) 8.03 ± 2.1 (b) 0.86 - 0.078. Subtract: (a) 12.5 - 1.2(c) 4 - 0.9Add: 2.05 to 30.6 9. 10. Subtract: 1.4 from 34 11. Work out (a) 7 - 4.27 + 3.14(c) (3.021 - 2.2) + 0.04(b) 6 - (0.43 + 1.62)(d) 5.23 + 4 - 6.0212. Maurice bought 6.4 litres of paraffin for some of his wall paint. He later bought 2.6 litres to mix all the remaining paint. How many litres of paraffin did he buy altogether? Morgan was given 3.5 grammes of juice powder but 2.6 grammes got spoilt. 13. How many grammes remained? Multiply:(a) 0.9 by 0.2 (b)1.23 by 3.2 (c) 2 x 0.75 14. Divide: (a) 6 by 0.04 15. 0.02 by 2 (b) Exercise 04 **Revision Exercise on Fractions** 1. Divide: (a) 1.2 by 0.03 (b) $0.064 \div 0.06$ 2. Work out: (a) 0.8 x 0.4 (b) 0.04 x 2 0.2 0.8 3. The length of one side of a square is 4.5 metres. (a) What is the perimeter of the square? What is its area (b) A rectangular garden measures 2.8 cm by 1.2 cm. Find its 4. (a) perimeter (b) Area A parcel weighting 8.5 kg contains packets of salt each weighting 0.25 kg. 5. how many packets of salt are in the parcel? There are 20 boys and 30 girls in a class. What is the ratio of 6. Boys to girls (b) girls to boys (a) Express the following rates as fractions 7. (a) 1:6 (b) 2:4(c) $\frac{1}{2} \div \frac{1}{4}$ (b) 0.2:0.4Change the following fractions to ratios 8. 3 (b) 1 1/4 $\frac{8}{4}$ (a) (c) 4 Peter and Sseku shared 32 sweets in the ratio 3 : 5. How many sweets did 9. each get? 10. A man and his wife shared an amount of money in the ratio 2 : 3 respectively if his wife got 9,000/= How much money did they share? (a) How much money did the man get? (b)

- 11. 120 oranges were shared by Amos, John and Mary in the ratio 1:2:3 respectively. How many oranges did each get?
- 12. The ratio of sharing 24 goats by A, B and C is 2 : 3 : 7. If B got 6 goats how many goats did each of the rest get?

Exercise 05 Revision Exercise on Fractions

- 1. The ratio of boys to girls in a class is 2 : 5 If there are 14 boys, how many pupils are in the class?
- 2. Increase 320 in the ratio (a) 4 : 2 (b) 3 : 2
- 3. Decrease 480 in the ratio (a) 2 : 4 (b) 1 : 2
- 4. The price of an article was reduced from 18,000/= in the ratio 2 : 3. Find the new price.
- 5. The cost of an item was increased to 4000/= in the ratio 4 : 3. What was its original cost?
- 6. The price of a plastic basin was reduced to 12,000/= in the ratio 2: 3 Calculate its original price.
- 7. The number of pupils in Kasanke Primary School rose from 400 to 480 pupils. What is the ratio of increase?
- 8. In what ratio did the enrolment of school C fall from 60 pupils to 25 pupils in the previous year?
- 9. If one exercise book costs shs 300/=, what is the cost of 4 similar exercise books?
- 10. Three pencils cost 2400/=, what is the cost of 2 pencils of a similar kind?
- 11. She 3600/= can buy 2 pairs of socks.
- 12. 2 men can do a piece of work in 4 days. How many days will 6 men take to do the same piece of work at the same rate?
- 13. 5 women can did a garden in 15 days. How many woman can dig the same garden in 5 days at the same working rates?
- 14. A bus moving at a speed of 60 km/hr takes 2 hours to cover a certain distance. How long will the car take to cover the same journey at 120 km/hr?

Exercise 06 Revision Exercise on Fractions

- 1. Express (a) 4% as a fraction. (b) $12 \frac{1}{4}\%$ as a fraction
- 2. Change the following fractions to percentages.
 - (a) $\frac{2}{5}$ (b) $\frac{3}{4}$ (c) $1\frac{1}{2}$
- 3. Change the following as decimal fractions

	(a)	0.5	(b)	1.25	(c)	0.075	(d)	0.014
4.	Express	the follo	wing as	decimal f	ractions.			
	(a)	0.2 %	(b)	0.25%	(c)	2.45%		
5.	Change	the ratio	s below t	o percent	tages.			
	(a)	1:4	(b)	3:8	(c)	2:3		
6.	Convert	t the follo	wing per	centages	to ratios			
	(a)	25 %		(b)	75%		(c)	125%
7.	If 25%	of a choir	are fema	ale, what	percentag	ge are the	e male?	
8.	There a	re 50 chil	dren in c	our poultr	y house.	We sold	15 of the	m yesterday.
	(a)	What p	ercentage	e of chick	en was so	old?		
	(b)	Calcula	te the per	centage	of chicker	n that ren	nained	
9.	What is	20% of	1800/=?					
10.	Find 15	% of an l	nour.					
11.	Find 12	1⁄2 of 800)/=					
12.	A schoo	ol enrolle	d 600 puj	pils of wł	nich 250 a	are boys.		
	(a)	How m	any are tl	ne girls?				
	(b)	What p	ercentage	e are the (i) boys		(ii)	girls
13.	(a)	Express	500g as	a percent	tage of 1	kg		
	(b)	Express	30 minu	ites as a p	percentage	e of 2 hou	ırs	
	(c)	Express	15 goats	s as a pero	centage o	f 90 goat	S	
	(d)	What p	ercentage	e are 125	g of a kg	?		
Exercis	e 07	Revisio	n Exerci	ise on Fra	actions			
1	150/ 6			1.1				
1.	15% of	a number	r 18 60. fi	nd the nu	imber	TT	1	
2.	10% of	my cattle	e are bull	s. The bu	lls are 45	. How ma	any cattle	e are in my
2	kraal?	4001	200/					
3. 4	Increase	e 400 by .	20% h:1.d		11		This are	
4.	The nur	nder of c	Million II		i last year	was 500). This ye	ar the number
5	Deerease	30 DY 23%	0. What 1	is the num	nder of th	le pupils i	in the sci	noor this year?
5. 6	Decreas	se 280 by	14%.	00.000/_	TT	1 11 1.		h.,
0.	An offic	ter s sala	ry is sns	80,000/= 	. HOW MU		iis salary	be
7	(a)	II IIS de Moizi h	creased t	by 20% book at 44	(0)	II Its III cold it ot	$\frac{1}{480/-}$ W	bet wee his
7.	(a)	profit?	ought a t	JOOK at 4.	30/- and $30/-$	solu it at	400/ W	hat was his
	(h)	Find his	nercent	age nr ofit				
8	Milderv	va hough	t a radio	at she 94^4	 50/- and s	old it at 9	9000/= V	Vhat was his
0.	loss?	iu oougii	1	ut 5115 /4.	o, and s	oru it dt .	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11ac 11ab 1115

- 9. What is the percentage loss of buying an item at 800/= and selling it at 600/=.
- 10. The marked price of an article is 4000/=. If a trader allows a discount of 2% find: (a) The discount allowed
 - (b) The actual price after the discount
- 11. Mukasa bought a book at 400/=, a pen at 500/= and a set mathematical instruments at 600/= and was offered a discount of 5%. How much did he pay altogether?

Exercise 08 Revision Exercise on Fractions

- 1. Calculate the simple interest on 20,000/= at a rate of 5 % per annum for 2 years.
- 2. Find the simple interest on 12,000/= at a rate of 4% per year for $2\frac{1}{2}$ years.
- 3. Find the amount of money a trader will withdraw at a principle of 50,000/= at a rate of 2 % per annum for 5 years.
- 4. Calculate the time taken for 15,500/= to yield 15000/= at a rate of 5 % per year.
- 5. Find time taken on

Principal	Rate	S.I	Time
15,000/=	2%	6000/=	
120,000/=	10%	24,000/=	
400,000/=	5 %	1000/=	
700,000/=	20%	28,000/=	

- 6. Find the rate at which 40,000/= will yield 3,600/= after 2 years.
- 7. What principal will give an interest of 2,800/= at 10% interest for 2 years?

UNIT: DATA HANDLING

LESSON 1

Subtopic:

Content:

- Collection and Organization of data. (i) Collection and recording information
- (i) Collection and recording information(ii) Grouping information in a frequency table.

- (iii) Organizing and recording information in a table.
- (a) Collect and record the age of 20 pupils in P.6 i.e 10, 11, 12, 11, 12, 12, 11, 10, 12, 11 12, 11, 12, 13, 12, 13, 12, 11, 14, 11
 - (b) Make columns of (i) Different age groups
 - (ii) tallies with corresponding ages
 - (iii) frequency / no of occurrence of tallies / ages of individuals.

Age group	Tally	Frequency
10		2
11	++++-11	7
12	++++-	8
13		2
14		1

(c) Organise the information in a table form

Age in years	10	11	12	13	14
Number of pupils (Frequency)	2	7	8	2	1

Example: Given the table below its information can be found on a graph (bar graph)

	/						
Type of food	Posho	Rice	Millet	Yams	Beans	Peas	Ugali
No of pupils	8	9	6	7	2	6	5

The information in the table above can be put on the graph as shown below.

Questions

- 1. Which type of food is liked by most pupils? *Rice is liked by most pupils*
- 2. Which food is least liked? <u>"Beans" is least liked</u>
- 3. Which two types of food are liked by the same number of pupils? *etc. millet and peas are liked by the same number of pupils.*

Activity

New Mk pg 85 – 86 Understanding mtc pg 132-133 Fountain pg 92

Remarks

LESSON 2

Sub-topic: Content: Examples: Line graphs Interpretation of a ready reckoner (a) Study the graph and answer questions that follow

- (b) What is the cost of 4 kg of sugar? $\frac{4000/=}{2}$
- (c) How many kg of sugar can one buy with 2000/=? 2 kg
- (d) What is the cost of 2 $\frac{1}{2}$ kg of sugar? <u>2500/=</u>

Content: Example: Interpreting travel graphs (distance time graphs) The graph below shows Tom's journey.

0

8am 9am 10am 11 am Time

Questions

- (a) What is the scale on the vertical axis? (1 square represents 5 km)
- (b) What is the scale on the horizontal axis? (1 square represents 15 minutes)
- (c) How far was Tom at 9.30 a.m? (15 km)
- (d) At what time was Tom 25 km away? (At 10: 30 am)

Activity

Fountain pg 102 |Mk old eition pg 167-168 **Remarks**

LESSON 3

Example

Subtopic: Content: Examples: Interpretation of information Finding the mode, median, mean and range (a) Find the mode and the modal frequ

Find the mode and the modal frequency of the following numbers.

8, 2, 6, 4, 5, 6, 9, 6, 2

(b) Find the median of the following numbers 4, 2, 6, 7, 3, 9, 8

50

Example:

(c)

Find the mean (average) of the following numbers. 2, 4, 5, 6, 3, 8, 7

Average = <u>sum of all items</u> Number of items

$$= \frac{2+4+5+6+3+8+7}{7} = \frac{35}{7}$$

= 5

LESSON 4

Subtopic:Interpretation grouped dataContent:mode, median, range and meanExample:The table below show the scores of marks got by pupils in a
Mathematics test

Marks	60	80	90	45
No of pupils	2	1	3	4

Find the (i) mode (ii) median (iii) range (iv) mean

(i) From the table the mode is 45.

(iii) Range =
$$H-L$$

= $90-45$
 45
(iv) Mean = $(60 \times 2) + 80 + (90 \times 3) + (45 \times 4)$
 10
 $= \frac{120 + 80 + 270 + 180}{10}$
 $= \frac{650}{10} = 65$
Activity
Trs' collection
Remarks

LESSON 5 Subtopic:

Subtopic:	Interp	retatio	on of inform	nation		
Content:	Invers	e pro	blems on av	verage		
Example	(a)	Th	e mean of 2	2, 4, 5, 6,	and	q is 5.
-		Fi	nd q			-
		<u>q</u> -	+2+4+5	+6 = 5		
			5			
	~	5 v	<u>q</u> + 17	=		5 x 5
	•	ኦለ	-5			
			q +	17	=	25
			q +	17 - 17	=	25 - 17
				<u>q</u> =	8	

Activity Trs' collection

Pupils work out the following exercise

1. The mean of the following numbers are given, find the unknown.

(a)	8, 4, 7	, 2, 6, x, $x + 1$. the mean is 10
(b)	7. 9. a	+3.68.5.3, the mean is 6.
2. The a	verage of	3. 0. 7 and x is 4. What is the value of x?
3 The a	verage of	7 x 9 8 and 10 is 8 Find the value of x
4 If the	average of	f x $3x$ $7x$ $4x$ and 0 is 6 find x
i. ii the	uveruge o	r , 5, 7, 7, 1, und 6 15 6. mid X.
LESSON 6		
Subtopic:	Interp	eting information
Content:	Invers	e problems on average (cont)
Example:	(a)	The average of 3 numbers is 12 What is the sum of the 3
Example.	(u)	numbers?
		Average $-$ sum of all items
		Average – <u>sum of an nems</u>
		Number of items
		12
		$12 = \underline{\text{sum}}_2$
		5 12 2
		$12 \times 3 = \underline{\operatorname{sum} \times 3}_2$
		3
		$\underline{\text{Sum} = 36}$
Example	(b)	The average mark of 4 nunits is 6 and the average mark of
Example	(0)	A other pupils is 8 what is the average mark of all the 8
		4 other pupils is 8. what is the average mark of an the 8
		The total mark of 4 pupils $= 4 \times 6 = 24$
		The total mark of 4 other pupils $= 4 \times 8 = 32$
		The total mark of 8 pupils $= 24 + 32 = 56$

The average mark of 8 pupils

Activity

MK old edition pg 172-173 Remarks

LESSON 7

Subtopic:	Pie chart
Content:	Interpreting pie chart involving fractions
Example	The pie chart shows how a man spends sh 300,000

Food Rent 4 10 Х $\frac{2}{10}$ 1 10 Saving others What fraction of his money did he spend on food? (i) How much does he spend on rent? (ii) How much more does he spend on food than others (iii) Let the fraction be x (ii) Expand on rent (iii) OR Food $\begin{array}{ccc} X &+ \underline{4} &+ \ \underline{2} &+ \ \underline{1} &= 1 \\ 10 & 10 & 10 \end{array}$ <u>4</u> x 300,000 <u>3</u> x 300,000 $\overline{10}$ 10 X + 7 == 90,000/= = 120,000/= 10 = 1 $X + \underline{7} - \underline{7} = 1 - \underline{7}$ others 10 10 10 (iii) 3 - 1 = 21 x 30,000 10 10 10 10 X = 10 - 7= 30,000/= 10 10 <u>2</u> x 300,000 $X = \underline{3}$ 1θ 10 = 60,000/= 90,000 - 30,000 The fraction is $\underline{3}$ = 60,000/=

Example (b) The pie chart shows how a man spends sh 360,000

10

- Find the value of x
- How much does he spend on Food?
- How much more does he spend on rent than on food?

52

For more lesson notes, visit www.freshteacheruganda.com

 $=\frac{56}{8} = 7$

(i)

Other	1000		1 00	
(i) $x + 60^{0} + 110^{0} + 90^{0} = 360$ X + 260 = 360 X + 260 - 260 = 360 - 26	$\begin{array}{c} 1000 \\ (ii) & \underline{90 \times 360000} = 90,000/= \\ \underline{360 \ 1} \\ 0 & 1000 \end{array}$	Example: (b)	The pie-chart represents the r and Science. If there are 320	number of pupils taking Maths, history pupils in the school.
	OR (iii) 110 x 360,000 = 110000 360 1000 60 x 36000 = 60,000 360 110,000 - 60,000 = 50,000	(i)	Science $5x$ (i) 2x X History maths (ii) x + 2x + 5x = 320 (ii) 8x = 320 8x = -320 40	 Find the value of x How many pupils do History How many pupils do Science than history? No who take History = 2x = 2 x 40
Fountain pg 93-97 Remarks				$= \begin{array}{c} 2 \\ 80 \\ 1 \\ 80 \\ 1 \\ 80 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $
LESSON 8 Subtopic: Pie charts Content: Interpreting pie chart invo Example: The pie chart shows how a Food 50% 30% x Rent saving (i) $x + 30\% + 50\% = 100\%$ X + 80% = 100% X + 80% = 100% X + 80% = 100% X + 80% = 80% = 100% X + 80% - 80% = 100% - 80% X = 20% Either (ii) $50\% - 20\% = 30\%$ 30% of $180000= 30 \times 180000 = 54,000$	lving percentages a man spends 180,000/= (i) Find the value of x (ii) How much does he spend of rent? (iii) How much more does he Spend on food than on rent? (ii) 30% of 180000?= <u>30</u> x 180000 = 54,000 100 OR 50% of 180000 = 20% of 180000 $= \left(\frac{50}{100} \times 180000\right) - \left(\frac{20}{100} \times 180000\right)$ = 90,000 - 36,000 = 54,000/=	(iii) LESSON 9 Subtopic: Content : Example	$5x - 2x = 3x$ $3x = 3 x 40$ $= 120^{0}$ Pie chart Interpreting pie chart involvin The pie chart below shows he spends 60,000/= on food, how $ \begin{array}{r} \hline $	R $5x - 2x$ $(5 \times 40) - (2 \times 40)$ 200 - 80 120 pupils. ng fractions ow a man spends his salary. If he w much does he earn? Let his salary be y/= 3 of y = 60,000/= 10 $10 \times \frac{10}{10} \times 3y = 60,000 \times 10$ $\frac{3y}{3} = \frac{60,000 \times 10}{3}$ <u>Y = 200,000/=</u>
				53

For more lesson notes, visit *www.freshteacheruganda.com*

1 pt reps
$$\frac{60,000}{3}$$

10 pts rep 20,000 x 10
= **200,000/**=

Examp	les: (c) The pie chart below sho	ws how a	man spends his salary. If he
	spends 60,000/= on food	1,	
	$\begin{array}{c c} \text{Rent} & \text{food} \\ 120^0 & & \\ \hline 70^0 & 80^0 \\ \text{Others} & \text{saving} \end{array}$		
(i)	let his salary be $x/=$ <u>90</u> of $x = 60,000/=$ <u>360</u> <u>90</u> ¹ $x = 60,000$ 360 ₄	(i)	OR 90^{0} represent 60,000/= 1^{0} represents $\frac{60,000}{90}$ 360^{0} represent $\frac{60,000}{90}$ x $\frac{360}{90}$ 4
	4 x $\frac{X}{4}$ = 60,000/= x 4 = X = 240,000/=		= 240,000/=
(ii)	$\begin{array}{c} 90 \\ 360 \\ 4 \\ 25 \\ \frac{1}{4} \times \frac{100}{4} \\ 4 \end{array}$		
Ref: tr	s' collection		

LESSON 10					
Subtopic:	Pie chart.				
Example:	In a village 25% of the farmers gro	ow bananas,	, 20%	6 grow m	aize
	15%, grow beans 10% grow cottor	n and 30% g	grow	coffee.	
	Use the above information and dra	5 18	11.		
	Sector for bananas =	<u>25</u> x 360 100	=	5 x 18	$= 90^{\circ}$
		21 318			
	Sector for beans =	<u>15</u> x 360 100	=	3 x 18	= 54 ⁰
		21			
	Sector for maize =	<u>20</u> x 360 100	=	2 x 36	= 72°
	Sector for cotton =	<u>10</u> x 3 60 100	=	1 x 36	= 36 ⁰
	Sector for coffee =	<u>30</u> x 360 100	=	3 x 36	$= 108^{\circ}$
	Beans 54 ⁰ bananas maize 72 36 ⁰ 108 ⁰ coffee cotton				
					54

Activity

New MK pg 99-Old MK pg 184-188 Fountain pg 98-99 **Remarks**

LESSON11

Subtopic:	Pie charts								
Content:	Constructing pie charts.								
Example:	In a pupil's school bag there are 4 English books, 3 SST books, 5								
	accurate pie chart								
Solution	The total number of books = $6 + 5 + 3 + 4 = 18$ books								
Doration	20								
	Sector for English books = $\frac{4}{18} \times \frac{360}{18} = 4 \times 20 = 80^{\circ}$								
	20								
	Sector for SST books $= \frac{3}{18} \times \frac{360}{18} = 3 \times 20 = 60^{\circ}$								
	20								
	Sector for English books = $5 \times 360 = 5 \times 20 = 100^{\circ}$ 18_{1}								
	20								
	Sector for English books = $\frac{4}{18} \times \frac{360}{18} = 6 \times 20 = 120^{\circ}$								
	SST								

Activity:

- 1. New MK pg 99
- 2. Old MK pg 184-188
- A woman spends her income as follows 1000/= on transport, 2000/= on drinks, 3500/= on food and 2500/= on other things. Draw a pie chart to show the information.

Remarks

LESSON 12

Subtopic:	Co-or	dinate graphs	dinate graphs					
Content	(i)	Naming axes						
	(ii)	Reading plo	otted co-ordinate points from the graph					
	(iii)	Plotting poi	nts on the graph.					
Example	(a)	Horizontal	Axis is the $X - axis$					
-	(b)	Vertical axi	s is the Y – axis.					
	(c)	Points	co-ordinate					
			(x, y)					
		А	(-6, +5)					
		В	(-2, -4)					
		С	(*6, -4)					
		D	(+3, +5)					
		E	(0,0)					
	(d)	Plot the poi	nts F (0, 6) G (5, 0) H (-2, -2) and I (0, -6) on					
		the coordinate	ate graph given.					
<u>N.B</u>	1 st dig	it is found alor	ng the $x - axis$ to form the coordinates of a					
	2 nd dig	git is found alo	ng the y – axis a point.					

For more lesson notes, visit www.freshteacheruganda.com

-7 -6 -5 -4 -3 -2 -1 +1 +2 +3 +4 +5 +6

Y - axis

Activity Trs' collection 1.

Remarks

LESSON 13

Subtopic: Area and perimeter of shapes on the grid. Content:

- Finding area of shapes on the grid. (i)
- (ii) Finding perimeter of shapes on the grid.
- Plot the following points on the co-ordinate graph below: Example: (a)
 - A (2, 2) B (2, 8) C (-3, 8) D (-3, 2)
 - (b) Join the points (done)
 - Name the shape formed. (Rectangle) (c)
 - Calculate / find its area. (d)
 - (e) What is its perimeter?

For more lesson notes, visit <u>www.freshteacheruganda.com</u>

Activity

Trs' collection

Revision questions on graphs and interpretation of information Exercise one

- 1. What is the mode of 4, 5, 2, 3, 9, 4 and 4
- 2. Find the median of 13, 11, 12, 8, 0 and 9.
- 3. Find the mean of 8, 6, 10 and 5.

4. The table below shows the results of a mathematics examination done by some pupils. study it and answer the questions that follow:

Mark		70	55	10	45	90	
No of	pupils	3		4	2	1	
	(a) How ma	any pupils did	the test				
	(b) Find the	modal mark					
	(c) Find the	modal freque	ency				
	(d) What is	the average n	nark				
5.	The average	of 3 numbers	is 20. fir	nd the sum o	of the num	bers.	
6.	The mean ag	ge of 6 boys is	10 years	and that of	4 boys is	15 years. F	Find the
	mean age of	the ten boys.					
7.	7. The mean of 3y, 2y, 5 and 2 is 5. find the value of y.						
8.	The mean of	p, (p+1), (p	+ 2), (p +	- 3), 5 and 7	is 5. Find	d the value	of p.
			-				-

Exercise Two

1.

- (a) How many marks did he score in Maths?
- (b) In which subject did he perform best?
- (c) Calculate Roberts average mark

Exercise Three -**PIE CHARTS**

The pie chart below shows how Agudo spends her 24 hours in a day. Use it 1. to answer questions which follow

- How many hours does Agudo spend sleeping? (a)
- How many more hours does she spend at school than doing house work? (b)
- If she reads 2 books in one hour, how many books does she read in a day? (c)

The pie chart below shows how Nakubuya spends his monthly salary of

- How much does he spend on rent? (b)
- What percentage of his income is used for food? (c)
- The pie chart below shows Awori's monthly expenditure use it to answer 3. questions that follow

- Find the value of X. (a)
- If h spends 90,000/= on rent, find this total expenditure? (b)
- How much more does he spend on food than transport? (c)
- The pie chart below shows the number of candidates who passed PLE in 4. four districts. Use it to answer questions.

58

For more lesson notes, visit www.freshteacheruganda.com

2.

(a)

- (a) If 600 candidates passed in Moroto. How many candidates sat for the examination?
- (b) How many more candidates sat in Bushenyi than Arua
- 5.
- A man shored his salary as follows: 6. Musobya 36,000/=, Akugizibwe y /=, Opari 40,000/=, Laker 10,000/=. If the man had 108,000/= draw an accurate pie chart to show the above information.
- At kigulu Primary School, 45% of the books in the library are for English, 7. 15% Science, 20% Mathematics, 10% SST and X% are other subjects. In a circle of radius 3 cm, draw an accurate pie chart to show the above information

EXERCISE FOUR LINE GRAPH

Study the line graph below and answer questions that follow 1.

What is the cost of maize per kg? (a)

- What is the cost of meat per kg? (b)
- What is the cost of beans per kg. (c)
- How much will I pay if I buy 2 kg of meat, 3 kg of beans and 4 kg of maize. (d)

The graph below shows the exchange rate of Uganda shilling against one US 2. dollar, use it to answer questions that follow.

- How many Uganda shillings are equivalent to US \$ 4.5 ? (a)
- Convert 2500 Uganda shillings to dollars. (b)
- Kasim bought a shirt at 3.5 dollar. Find the price in Uganda shillings. (c)
- How many Uganda shillings are equivalent to 1 US \$?
- (d)

	Η				-3	J					
			X	¥	- 4						
			Ι		- 5						
					- 6						
					- 7			X	¥		
					- 8				М		

Write the coordinates of the points plotted in the graph.

A ()	B ()	C ()	D ()	E()
F ()	G ()	Η()	I()	J ()
K ()	L ()	M ()		

EXERCISE FIVE - <u>COORDINATE GRAPH</u>

Below is a coordinate graph

X-axis
8

Plot the following points on the graph

For more lesson notes, visit www.freshteacheruganda.com

.

- (b) Join A to B, B to C, C to D, D to A
- (c) What name is given to the polygon formed?
- (d) Calculate the area of polygon formed in square units.

EXERCISE SIX (TRAVEL GRAPHS)

The graph shows Emojongs journey from Pakwach to Kumi. Use it to answer questions that follow.

- (a) At what time did Emojong arrive at town X?
- (b) For how long did he rest at town Y?
- (c) What distance had he covered by 6.20am?
- (d) Calculate his average speed for the whole journey.
- 2. A gate way bus leaves Soroti at 800am and travels at 60km/hr for 2 hours. The driver rests for half an hour. He then continues for another 1 ½ hours at 40 km/hr until he reached his final destination.

- (a) Draw a travel graph for the above information
- (b) What was his average speed for the whole journey?

EXERCISE SEVEN – (TRAVEL GRAPHS)

1. Study the graph below and answer the questions which follow Town Q

- (a) How far is town Q from town P?
- (b) How long did the motorist take to travel from town P to Q?
- (c) What was the average speed of the motorist 35km from P to Q?
- (d) At what time was the motorist 35km from P?
- (e) Calculate his average speed for the whole journey.

```
UNIT 8
                MEASURES
UNIT / TOPIC:
                         MEASURES
LESSON 1
Subtopic:
                MONEY
Content:
                Currencies.
                Finding the number of notes/ denominations amount and its
                application in real life situation
                Bank notes are numbered from <u>A</u> 003782 to <u>A</u> 003881.
Examples
                                              Р
                                                           Ρ
                How many notes are there?
                First note <u>A</u> 003782
                          Р
                Last Note <u>A</u> 003881
                           Р
                N_{2} of notes = A 003881
                              Р
                              A 003782
                         _
                              Ρ
                                   99 without last note
                Total № of Notes
                                    = 99 + 1
                                     = 100 notes.
                If denominations was worth shs 1000 per note then amount
                                           = 1000
                         =
                                 1 note
                                 100 \text{ notes} = 1000 \text{ x} 100 /=
                                          = 100,000/=
Activity
Pupils will do exercise 10 : 3 page 218 in MK BK 6.
Remarks:
LESSON 2
Subtopic:
                MONEY
Content:
                Uganda and other currencies
```

Example: Country currency

COUNTRY	CURRENCY
Uganda	Uganda shillings (U.shs.
Kenya	Kenya shilling (K.shs)
Rwanda	RF
South Africa	ZAB
Zambia	Kwacha (Kch)
USA	US dollar
Britain	Pound sterling (£)
Japan	Japanese Yen (¥)
European Union	Euro (euro)
German	Deutsch Mark (DM)

Rate

Needs updating the forex rates

Currencies	Buying	Selling
1 pound sterling (£)	Ug shs 2500	Ug shs 2550
1 US dollar (US \$)	Ug shs 1700	Ug shs 1720
I Kenya shillings K shs	Ug shs 19	Ug shs 20
1 Rwanda Franc (R.F)	Ug shs 1.9	Ug shs 2.2
1 Euro (Euro)	Ug shs 1520	Ug shs 1560
1 Tanzania shillings (TZ shs)	Ug shs 1.6	Ug shs 2

Example:

A tourist arrived in Uganda with \pounds 7650. The exchange rate is \pounds 1 = Ug shs 2500, How much money in Uganda shillings did he have. Solution

Bureau will buy from him. $\pounds 1 = Ug \text{ shs } 2500$ $\pounds 7650 = Ug \text{ shs } 2500 \times 7650$ Ug shs 19,125,000

Tamu has Euros equivalent to Ug shs 12480,000. Find the amount in Euros Tamu will get. Solution Bureau is selling Euros to Tamu

```
1 \text{ Euro} = Ug \text{ shs } 1560
Ug \text{ shs } 1560 = 1 \text{ Euro}
Ug \text{ shs } 1 = \underline{1} \text{ Euro}
1560
Ug \text{ shs } 12480000 = \underline{1} \text{ x } 12480000, \text{ Euro}
1560
= 8000
\underline{12480000} \text{ Euros}
\underline{1560}
= 8000 \text{ Euros}
```

Activity

Fountain pg 117 Understanding pg 180-181.

LESSON 1

Subtopic:	TIME					
Content:	-	24 hour clock				
	-	conversion 12 h	conversion 12 hour clock to 24 hour clock			
Examples:	Time ta	ble				
12 hr		24 hr clock				
12.00 mid night		0000 hrs / 24 ho	urs			
11.00 pm		2300hrs	Exar	nple		
10.00pm		2200 hrs	1.	write 12.45 pm in 24 hrs clock		
9.00 pm		2100 hrs		pm→+ 1200 hrs		
8.00 am		2000 hrs		$1245 \text{ pm} = \underline{1245 \text{ hrs}}$		
7.00 pm		1900 hrs				
6.00 p.m		1800 hrs				
5.00 p.m		1700 hrs				
4.00 pm		1600 hrs	2.	Express 11 : 45 pm to 24 hrs		
3.00pm		1500hrs		clock		
2.00 pm		1400 hrs		pm 1200 hrs		
1.00pm		1300 hrs		12 00		
12.00 Noon		1200 hrs		+ 11 45		
11.00 am		1100 hrs		23. 45 hours		
10.00 a.m		1000 hrs				
9.00 am		0900hrs				
8 .00 am		0800 hrs				

0700 hrs
0600 hrs
0500 hrs
0400 hrs
0300 hrs
0200 hrs
0100 hrs

Activity

Pupils will do exercise 9 a and 9b page 217 and 218 respectively MK BK 5. **Remarks:**

Content: Example:	Conver 1.	sion of 24 hour clock to 12 hour clock Express 04 00 hours as 12 hour clock 04 00 - 00 00 4. 00 am
	2.	Express 1330 hours as am or pm 13 30 hrs - 12 00 1. 30 pm
Activity Pupils will do ex Pupils will do ex Tr's collection Remarks:	ercise 9c ercise 24	e page 218 MK BK 5. I:4 page 23, MK BK 6 (old)

LESSON 2

Subtopic:	TIME
Content:	Finding duration
Examples.	(i) How many hours are there between 11 00 hours and 1830
	hours
	18 30 hrs
	- 11 00 hours
	$\overline{7.30} = 7$ hours 30 minutes

(ii) An exam started at 1359 hours and ended at 1610 hours. How long was the exam?

	16 10 hours		
_	- 13 59 hours		
_	2.11	=	2 hours 11 minutes

Activity

Pupils will do exercises 24 : 6 in MK BK 6 (Old) pg 224-225 **Remarks:**

LESSON 3

- Subtopic:Distance, Speed , TimeContent:Distance
 - 1. Find the distance travelled by a car in 3 hours at 60 km/hr Speed = 60 km/hr Time = 3 hours Distance = speed x time = 60 km/hr x 3 hours = 60 x 3 km x hr 1 hr 1 = 180 km.
 - 2. A car takes 2 ½ hrs to cover a journey at a speed of 40 km/hr. Find the distance travelled.

Speed	=	40 km/hr	
Time	=	2 ¼ hrs	
Distance	=	speed x tin	ne
	=	40 km / hr	x 2 ½ hr
		40 x 2 ½	<u>km</u> x hr 1
			hr 1
		20	
	=	40	x <u>5</u> km
			2 1
	Dis	tance $= 10$	<u>0 km</u>

Activity

NB: Finding distance with minutes and km/hr on duration Old Mk 228-230 New Mk pg 112 Understanding Mtc 121-123 **Remarks:**

LESSON 4

Subtopic:	Distance, speed, Time
Content:	Speed Speed = $\frac{\text{distance}}{\text{Time}}$
Example:	A car travels for 3 hours to cover a distance of 210 km. At what speed does the car travel. Time = 3 hours Distance = 210 km Speed = $\frac{\text{distance travelled}}{\text{Time taken}}$ = $\frac{\frac{70}{210} \text{ km}}{3 \text{ hrs}}$ Speed = 70 km/hr
Activity Pupils will do exe New MK 114 Old edition 231-2	ercise 10 : 16 page 235 MK BK 6
LESSON 5 Subtopic: Content: Example:	Distance, Time Speed Expressing km/hr as m/sec Express 72 km/hr as m/sec Means distance = 72 km Time = 1 hr $\underline{\text{Distance}}$ $\underline{\text{time}}$ I km = 1000m hr = 3600 sec 70 km = 72 x 1000 m

```
= 72000m
Speed = \frac{\text{distance}}{\text{Time}}= \frac{72000m}{-3600} \text{ sec}1= 20m/\text{sec}
```

Activity

Pupils will do exercise 10 : 17 page 236 MK BK 6. New MK 113

LESSON 6

Subtopic: Distance, Time, Speed Expressing m/sec as km/hr Content: Example: Express 100m/sec as km/hr Meaning = 100 m in 1 sec time Distance 3600/sec = 1 hr $1 \sec = \underline{1} \operatorname{hr}$ 1000m = 1 km<u>1 km</u> 3600 1 m = 1001 x 100 km 100m = 1000<u>1</u> km = 10 = 0.1 kmdistance Speed = Time distance ÷ time = $1 \text{ km} \div 1 \text{ hr}$ = 10 360 <u>1</u> x <u>3600</u> km/hr =10 1 = 360 km/hr=Activity New Mk pg 116 Old Mk pg 236

LESSON 7 SUBTOPIC: Content: Examples:	Distance, Time, Speed Finding average speed. A car takes 2 hours to cover a certain distance at 60 km/hr bu returns in 3 hrs. Calculate the average speed of the car for the				
	Journey. To journey	Fro journey			
	$\frac{10 \text{ journey}}{\text{Time} = 2 \text{ hrs}}$	$\frac{110 \text{ Journey}}{\text{time} = 3 \text{ hrs}}$			
	Speed = 60 km/hr	speed = 60 km/hr			
	Distance = speed x time	distance = speed x time			
	= 60 km/hr x 2 hrs	= 60km/hr x 3 hrs			
	60 x 2 <u>km</u> x hr 1	= 60 x 3 km x hr 1			
	$\frac{hr}{hr}$ 1	hr 1			
	Distance = 120 km	distance = 180 km			
	Average speed = <u>total distance travelled</u> Total time taken				
	= 120 + 180 km				
	2+3 hrs				
	= 60				
	<u>300</u> km				
	-51 hr				
A _ 4 • _ • 4	= 60 km/hr				
Activity Now Mk 115					
Old Mk 235					
Remarks:					

LESSON 9

(b) What happened at B?)resting)

Activity

Pupils will do exercise 10 : 24 page 240 MK BK 6. New Mk 115-120 Understanding pg 192-193

Remarks

LESSON 11

Subtopic:	Travel graphs
Content:	Drawing travel graphs
Examples:	Nduga started from town P at 7 a.m and covered 60km in 2 hours,
	then he rested for 30 minutes. Then covered the remaining 30 km to
	town R in 30 minutes.
	(a) Show Nduga's journey on a travel graph

- Show Nduga's journey on a travel graph. (a)
- At what time did he start his rest? (b)
- (c) Where was Nduga after the first hour?
- Calculate Nduga's average speed for the whole journey. (d)

Activity

Pupils will do exercise 2 Nos 1 – 5 on page 109 of Oxford Primary MTC pupils BK 6.

Remarks

Theme	Торіс	Sub topic	
Measurements	Length, mass	Circumference	
	and capacity	Measuring the length of a	
		straight spring	
		Relationship between	
		diameter and circumference (
) pie of circle.	
		 Finding circumference of a 	
		circle	
		Finding the radius and	
		diameter when given	
		circumference.	
		Area	
		Finding area of:	
		- Triangles	
		- Rectangle	
		- Trapezium	
		- Parallelogram	
		- Circle	
		- Kite	
		Volume	
		Finding value of;	
		- Cube	
		- Cuboid	
		- Cylinder	
		- Triangular prism	
		Capacity	
		Litres, half litres and quarter	
		litres	
		Calculating capacity in litres	
		and millilitres	

TERM III MTC NOTES

		1			
Geometry	Lines,	•	Parallel lines		
	angles, and	-	Construction of parallel lines		
	geometrical	-	Using a set square		
	figures	-	Construction of parallel lines		
		-	Using a compass		
		•	Perpendicular lines		
		-	Constructing perpendicular		
			lines, perpendicular bisector		
		-	Dropping a perpendicular line		
			from point		
		-	Skew lines		
		•	Angles		
		-	Naming common arms and		
			adjacent angles,		
			supplementary angles ,		
			vertically opposite angles, and		
			complementary angles.		
		-	Construction of angles of 90 ⁰ ,		
			60º and 120º		
		-	Bisecting angles		
		-	Construction of angles of 30 ⁰ ,		
			45º, 135º, 15º , and 75º etc		
		-	Properties of triangles (types		
			of triangles)		
		-	Pythagoras theorem		
		-	Constructing a right angled		
			triangle		
		•	Geometric figures		
		-	Quadrilateral and their		
			properties		
		-	Application of properties of		
			quadrilaterals		
		-	Calculating angle of a		
			rhombus and parallelogram		
		-	Construction of squares		
		-	Construction of a regular		
			hexagon in a circle		

 when given sides Simple properties of prisms Nets of simple prisms
--

Numeracy	Integers	 Integers on a number line Addition of integers Subtraction of integers Writing mathematical statements Addition and subtraction of integers without using a number line Application of integers 		
Algebra	Algebra	 Algebra (forming algebraic equations) Collecting like terms Substitution Simple equations (solving equations) By addition By subtraction By multiplication By division Equations involving brackets Forming and solving equations formed from polygons. 		

TOPIC LENGTH, MASS AND CAPACITY

LESSON 1

Length Subtopic: Measuring Content: Learners will participate in measuring and recording length of Example: different objects Book (length) i.e book (width) book (thickness) Geometry set (length, width, thickness) pencil (length) (length, width) door window (length, width) table (length, width, thickness)

Activity

Teacher will organize different objects to be measured by the pupils. Old Mk 313-315

Remarks:

LESSON 2			
Subtopic:	Length		
Content:	Changing from	m small to large units	
	- metr	es to kilometres	
	- centi	imetres to metres	
Examples:	Change 2500 metres to kilometres		
	1000m =	1 km	
	1 m =	<u>1</u> km	
		1000	
	2500m =	1 x 25 00 km	
		1000	
	=	25 km	

1 = 2.5 km

10

Change 300 cm to m 100 cm = 1 metre (m) $1 \text{ cm} = \frac{1}{100} \text{ metre}$ $300 \text{ cm} = \frac{1}{1} \text{ x} 300 \text{ m}$ $\frac{100}{100}$ $\frac{1}{2} \text{ metre}$

Activity

(ii)

Pupils will do exercise 13. 5 and 13.6 page 315 – 316 MK BK 6. Old Mk 315-316 **Remarks:**

LESSON 3

Subtopic:LengthContent:PerimetExample:1.

(2)

Perimeter of geometrical figures1. Find the perimeter of the figure below

For more lesson notes, visit www.freshteacheruganda.com

$$8 \text{ cm}$$
Side X = 2 + 3
X = 5 cm
Perimeter = S₁ + S₂ + S₃ + S₄ + S₅ + S₆
= 8cm + 3cm + 2 cm + 5 cm + 3cm + 5 cm
= 26 cm

Activity

Pupils will do exercise 13 : 12 and 13.13 page 320- 321 MK BK 6. Old Mk 320 New MK 125 **Remarks:**

LESSON 5

The area of a square is 64cm². Find the length of each side of the square.

P = (2 x 2) x (2 x 2) x (2 x 2)

 $S \times S = Area$ $P \times P = 64$

 $\sqrt{P2} = \sqrt{64}$

P = 2 x 2 x 2P = 8Each length = 8 cm

Factorise				
(2	64			
(2	32			
(2	16			
(2	8			
(2	4			
(2	2			
	1			

Activity

Pupils will do exercise 13 :18 page 328 MK BK 6. Pupils will do exercise 13 :19 page 329 MK BK 6 New MK 122-123.

Remarks:

LESSON 6

Subtopic: Content: Example: Area Finding the side of a rectangle when area is given The area of a rectangle is 56cm². The length is 8cm. find the width of the rectangle.

$$Area = 56 cm^2 \qquad w$$
8cm

L x W = Area8cm x w = 56cm² 7

71

$$\frac{\underline{8 \text{ cm } x \text{ w}}}{\underline{8 \text{ cm}}} = \frac{\underline{56}}{\underline{8} \text{ cm}^2}$$
$$\frac{\underline{8} \text{ cm}}{\underline{8} \text{ cm}}$$
$$1 \qquad 1$$
$$W = 7 \text{ cm}$$
$$\underline{\text{Width}} = 7 \text{ cm}$$

11. A rectangular piece of paper is 4800mm². Its width is 60 mm. Find its length

60 mm	Area = 4800r	nm ²		
	Length			
L	ength x width.	=	Area	
L	x W	=	Area	
L	2 x 60 mm	=	4800mm ²	
Ī	<u>, x 600mm</u> 60mm 1	=	$\frac{4800 \text{mm}^2}{60 \text{mm}}^2$	
$\underline{L} = 80 \text{ mm}$				

Content:Finding area when perimeter is givenExample: 2The perimeter of the rectangle is 24 cm and the width is 5cm

Find the (a) length of the rectangle (b) Area of the rectangle Area

(a)
$$2 (L + W) = \text{perimeter}$$

 $2 (L + 5 \text{cm}) = 24 \text{ cm}$
 $2L + 10 \text{ cm} = 24 \text{ cm}$
 $2L + 10 - 10 = 24 \text{ cm} - 10 \text{ cm}$
 $2L = 14 \text{ cm}$
 $2L = 14 \text{ cm}$
 $2L = 214 \text{ cm}$
 $2L = 14 \text{ cm}$
 $2L = 7 \text{ cm}$
 2 cm

Activity

Pupils will do exercise 13 :23 page 333 MK BK 6. New MK pg123-125

Remarks:

LESSON 7

```
Subtopic:
                  Area
Content:
                  Finding sides, Area and perimeter
Example:
                  ABCD is a rectangle.
                           (2x - 5) cm
                                              (x - 1) cm
                           (x + 3) cm
                           Find the value of x
                  (i)
                           Find width and length
                  (ii)
                           Find the area of the figure
                  (iii)
                           Find the unknown
                  (i)
                            2x - 5 = x + 5
                           2x - x = 3 + 5
                            X = 8
                  (ii)
                           Length . x + 3
                                    8 + 3 = 11 \text{ cm}
                            Width: x - 1
                                     8 - 1 = 7 cm
                            Area = L \times W
                  (iii)
                                  = 11 \text{ cm x 7 cm}
                                     77 \text{ cm}^2
                           Perimeter = 2(L + W)
                  (iv)
                                    = 2 (11 \text{ cm} + 7 \text{ cm})
                                      2 x 18cm
```
<u>Perimeter = 36 cm</u>

Activity Pupils will do exercise 13 :24 page 334 - 335 MK BK 6. Tr's collection Remarks:

LESSON 8

Length of outer rectangle = 8 cm + 2 + 2 cm

Width of outer rectangle= 12 cm= 5 + 2 + 2 = 9cmArea outer rectangle= L x W= 12cm x 9 cm= 108 cm²Area of shaded part= 108cm² - 40cm²= 68cm²

Activity

Pupils will do exercise 13 :25 Nos 1 - 6 page 337 in MK BK 6. Understanding pg 262-263 **Remarks:** Use a variety of units

Examples: 2 Find the base of a triangle whose area is 60cm² and height is 12cm Diagrammatic representation

1

1

b = 10 cm

Activity

Pupils will do exercise 13 :27 page 339 to 340 MK BK 6. New MK 127 Fountain 135-136 **Remarks:**

LESSON 10

Pupils will do exercise 13 :28 page 342 MK BK 6. **Remarks:**

LESSON 11

Subtopic: Area Content: Finding area of combined shapes Find the area of the whole figure. Examples: 6cm B 4cm 5cm 6cm Α 10em 8cm Name the identified figures in above. A and B Area A = $\frac{1}{2}$ x b x h Area B = $\frac{1}{2}$ x b x h 4cm 5 1 x 8cm x 6cm 1 x 10 x 4cm $\frac{2}{2}$ $\frac{2}{2}$ 24cm^2 = 5 cm x 4 cm $= 20 \text{cm}^2$ Area of whole figure AA + AB= $24 \text{cm}^2 + 20 \text{cm}^2$ = $= 44 \text{cm}^2$ Activity Pupils will do exercise 13:29 page 343 MK BK 6. Understanding mtc pg 258

Activity

Remarks:

Content: Examples: Finding one side of a trapezium The area of a trapezium is 60cm², the height is 4cm and one of the parallel sides is 10cm. find the length of the second parallel side.


```
\underline{1} h (a + b) = Area
2 2
1 \times 4 \text{ cm} (a + 10) = 60 \text{ cm}^2
2
2 \text{cm} (a + 10) = 60 \text{ cm}^2
2acm + 20cm = 60cm^2
2acm + 20 - 20 = 60 - 20
            2a = 40
            1
                        20
                      <u>40</u>
            \frac{2a}{a} =
                      \frac{1}{2}
            \frac{2}{2}
            a = 20 \text{ cm}
Second parallel side is 20 cm
```

Activity

Pupils will do exercise 15 : 31 page 346 MK BK 6. New MK pg 128

Remarks

LESSON 13

Subtopic: Area Content: Area of parallograms Examples

> AREA OF PARALLOGRAM = BASE X HEIGHT Find the area of the figure below

area = BASE x HEIGHT = 10 cm x 6 cmArea = 60 cm 2

Remarks

LESSON 14

Content : Area of rhombus and kite Example 1. Find the area of the rhombus below

Area = $\frac{1}{2}$ d₁ x d₂

 $\frac{1}{2} \times 8 \text{cm x 6 cm}$ 4 cm x 6 cm 24cm^2

Example II Find the area of the kite

<u>1</u> x 8cm x 12cm 2 4cm x 12cm 48cm^2 Ref: New Mk pg 130 **LESSON 15** Subtopic: length Content: Circumference -Diameter Radius Examples: Circumference: is distance around a circular object. **Diameter:** The longest distance through the centre of a circle object to the covered line. Radius: Half the diameter distance radius Circumference Diameter (i) Find the radius of a circle whose diameter is 40 cm. diameter Radius = 2 <u>40</u>²⁰ = $\frac{2}{1}$ radius = 20 cm= (ii) Find the diameter of circle whose radius is $3\frac{1}{2}$ cm 2 x r Diameter = 2 x 3 ¹/₂ cm = 1 2 x 7 = 21 Diameter = 7 cm

Content: Calculating circumference of a circle Examples: (i) Find the circumference of a circle whose diameter is 10 cm. (Use $\pi = 3.14$) Diameter = 10 cm Circumference = π D = 314 x 10 cm = $\frac{314}{100}$ x 10 cm

Ref: understanding mtc pg 254-257 New MK pg 132

LESSON 16

Content: perimeter of sectors of a circle Example 1 Find the perimeter of these shapes ($\pi = \frac{22}{7}$ or 3.14)

7cm

21m

Ref: Mk new Mk pg 133

LESSON 17

Content: finding the area of a circle Example 1 Find the area of the circle

7cm

A =
$$\pi r^2$$

= 22 x 7 x 7
= 22 x 7
= 154cm²

Example 2 Calculate the area of the circle below (take π

LESSON 18

$$\begin{array}{ccc} TSA = 2 \ (lw) + 2(wh) + 2(hl) \\ 4cm &= (2 \ x \ 6 \ x \ 5) + (2 \ x \ 5 \ x \ 4) + (2 \ x \ 6 \ x \ 4) \ cm^2 \\ \hline 5cm &= 60 + 40 + 48 \ cm^2 \\ \hline 6cm & \underline{TSA} = 148 \ cm^2 \end{array}$$

Content:

Total Surface Area of a Cube

Examples:

Cube

- Cube has all edges equal
- Cube has all its faces equal
- Each face is a square

It has 6 equal faces Area of one face = $S \times S$ = S^2 where S is side \therefore 6 faces will have area 6 x S^2 \therefore TSA of cube = $6S^2$

total	surface area of a cube whose side is 4cm
=	6 x S ²
=	6 x 4 ²
=	$6 x 4 x 4 cm^2$
=	<u>96cm²</u>
	= total = = = =

Activity

Pupils will do exercise 13:34 and 13:35 page 350 and 351 respectively in MK BK 6. . Remarks

LESSON 19

Subtopic:	Area			
Content:	Finding sides of a cube			
Examples:	The tota side of a TSA	ll surface square. =	area of a cube is 384cm ² . Find the length of each 384cm ² .	
	But $6S^2$	=	TSA	
	$\frac{6S2}{6}$	=	$\frac{64}{6^{1}}$	
	S^2	=	64	
	$\sqrt{S^2}$	=	√ <u>64</u>	
Activity	<u>5</u>	_	<u>8011</u>	
1 Lett they				

Pupils will do exercise 13:36 page 351 MK BK 6. Remarks

LESSON 22

Subtopic:volumeContent:volume of a cylinderExamplesFind the volume of the cylinders below

$$\frac{= 22}{-7} x 7 x 7 x 20$$

= 22 x 7 x20
= 154 x 20
= 3080cm²

LESSON 20

Subtopic: Capacity Volume (3 dimensional figures.) Content: Example: A rectangular tank is 30cm by 60 cm by 90 cm. Find its capacity litres. Sketch Volume of the tank = L x w x h $= (30 \times 60 \times 90) \text{ cm}^3$ 90cm 1 litre $= 100 \text{cm}^{3}$ No of litres in the tank 30cm $= 30 \times 60 \times 90$ 1000 60 cm = 162 litres Activity Pupils will do exercise 35.8, Nos 1 - 10 on page 373 of a New MK pupils BK 6. (Old ed)

New Mk 139-141 Remarks

1. The tank below holds 72 litres of water.. find h.

2. The tank below holds 280 litres of water find h.

The tank below is 1/3 full of water. How many litres of water are in the tank?

79

3.

$$M_{10}M_{10}M_{10}$$
 60 cm80cmRef: old Mk pg 359-360Understanding pg 266-268Remarks**LESSON 23**Subtopic: CapacityContent: Conversion of cm³ to litresExamples (a) Change 2000 cm² to litresSolution: 1000cm³ = 1 litres1 cm³ = $\left(\frac{1}{1000}\right)$ 2000cm³ = 1 litres1000cm³ = 1 litres10000 m³ = 1 litres1000 m³ = 1 litres1000 m³ = 1 litres10003700cm³ = 1 x 3700 = 371000RemarksLESSON 24Subtopic: CapacityContent: Conversion of ml to litresSolution

1000ml =

1 ml =

1 litre

 $\underline{1}$ litres

$$3500 \text{ml} = \begin{bmatrix} 1000\\ \frac{1}{1000} & x & 350 \end{bmatrix} \text{ litres} \\ \frac{35}{10} = 3.5 \text{ litres} \\ \end{bmatrix}$$

$$(b) \quad \text{Express 900 ml as litres.} \\ 1000 \text{ml} = 1 \text{ litre} \\ 1 \text{ ml} = \begin{pmatrix} \frac{1}{1000} \\ 1000 \\ 1000 \\ 900 \text{ml} = \begin{pmatrix} \frac{1}{1} & x & 900 \\ 1000 \\ 1000 \\ 900 \\ 10 \\ 900 \text{ml} = \begin{pmatrix} \frac{1}{2} & x & 900 \\ 1000 \\ 1000 \\ 10 \\ 100$$

Activity

Content:

Pupils do exercise 13.42 No 1 – 16 on page 362 of a New MK pupils Bk 6 (New ed)

= 7 x 500 = 3500ml

For more lesson notes, visit www.freshteacheruganda.com

Remarks

А

LESSON 25 SUBTOPIC: PACKING

Content: volume Examples Containers A are to be packed in a big container B

- a) Find the number of small containers that can be packed in B.
- b) How many containers A of water can fill container B?

MEASURES QUESTIONS

Set I

- 1. What is the cost of 250g of sugar at shs 2000 per kg?
- 2. A man watched a television for 900 seconds. For how many hours did he watch the television?
- 3. How many hours are between 3.30am and 2.30pm?
- 4. A victory party started at 8.40 am and ended at 11.15pm. How long did it take?

- 5. If the exchange rate is US \$ 1 to Ushs 1750. How many dollars can I get from U hs 85,500?
- 6. A businessman bought a radio at shs 450,000 and sold at shs 500,000. calculate his profit.
- 7. If I sell an article at shs 120,000 making a profit of shs 5000. how much did I pay for the article?
- 8. Calculate the loss made by a trader buying an article at shs 10000 and selling it at shs 9050.
- 9. A man had shs 5000 and bought the following items:
 - 2kg of sugar at shs 1200 per kg
 - 500gm of salt at shs 400 per kg
 - 3 bars of soap at shs 2100.

Calculate his total expenditure and balance.

Set 2

- 1. Find how many notes are in a bundle of notes numbered from AP 627400 to AP 27499.
- 2. How many 100 shilling coins are equivalent to twenty thousand shillings note?
- 3. A bus covered a distance of 60 km in 45 minutes. What was its speed?
- 4. Jinja is 148 km from Mbale through Iganga. The distance from Jinja to Iganga is 39km. How far is Mbale from Iganga?
- 5. A car travels at 96km/hr for 20 minutes. Calculate the distance travelled?
- 6. Two towns A and B are 420km apart. A driver travels from A to B at 7 kph and returns at 105 kph. Calculate his average speed for the whole journey.
- 7. Mwanani covers a distance of 180km in 3 hours. Calculate the speed in m/sec.
- 8. Katoke traveled to Kenya with K shs 25000 and then to German with Euros 2000. Find the total amount of money in Uganda shillings that he travelled wih if K shs 1 = U shs 22 and Euro 1 = Ug shs 1520.
- 9. How much money is contained in a 5000 shilling note bundle numbered from VU 28504 and VU 285140?

<u>Set 3</u>

- 1. How many seconds are in 35 minutes?
- 2. Express 3.30 p.m to 24 hour clock.
- 3. Change 18000 seconds to hours.
- 4. Mugisha reached school at 8.15am and left the school at 5:30 pm how long did she stay at school?
- 5. What distance will be covered at a speed of 20 m/sec for 5 minutes?

- How long will a car take to cover a distance of 180km at a speed of 60 6. km/hr?
- Change 40m/sec to km/hr 7.
- Lira is 124km from Kitgum. A bus takes 1 ¹/₂ hrs from Kitgum to Lira and 2 8. $\frac{1}{2}$ hrs going back. Find its average speed.
- A parent bought the following articles for the children at beginning of the 9. term.
 - a dress at shs 5500 _
 - a shirt at shs 3000 -
 - 2 pairs of shorts at shs 3500 each. -
 - Two pairs of shoes at shs 8000 each _

If the parent had shs 50000. calculate his total expenditure and balance.

Set 4

- Express 6km as metres. 1.
- One side of a regular hexagon is 8 cm. What is the total distance round it? 2.
- A triangular field has a base of 15m and its height 12m. what is the area of 3. the field?
- Calculate the circumference of a round table top whose diameter is 1.4m? 4.

5. Calculate the area of the figure below.

- A barrel of oil has a radius of 0.5m. calculate its diameter in centimetres. 6.
- The diagram below is a rectangle ABCD. 7.

Find the length of AD

Find the perimeter of the Triangle ABC

Set 5

- Express 2 ¹/₂ litres as millitres. 1.
- Write 15000 cm³ as litres. 2.
- 3. Find the volume of the figure below.

- 4. A field is $40m^2$, what is the area is cm^3
- 5. A road is 8 km long. What is this distance in metres?

- Find the width of the inner rectangle (i)
- (ii) Find the area of the shaded part

8. Change 6.045kg to grams.

- 9. A square room is 3.6 m long. What is its area?
- 10. Find the height of triangle whose area is 30cm^2 and its base is 12cm.

THEME: Geometry Topic: LINES , ANGLES AND GEOMETRIC FIGRUES

KM = 10 cm $\angle KML = 52^{0}$

Activity Understanding mtc pg 230-231

Remarks

LESSON 6

Subtopic:Construction of trianglesContent:Construct triangle (AAS)Example:Construct triangle PQR where angle PQR = 30° , angle PRQ = 60° and side QR = 5.8cm(a) Measure PQ and PR(a)Measure PQ and PR

Activity Understanding mtc pg 230-231

Remarks

LESSON	7
	'

SUBTOPIC: Content:	Const -	Construction of polygons - Construction of quadrilaterals	
		(a)	square
		(b)	Rectangle
		(c)	Determine the diagonals
	-	Their	properties
Example:	(i)	Const	ruct a square of side 6cm'
-		(b)	Give the length its diagonals

Sketch

(ii) Construct a rectangle PQRS such that PR = 8cm and RS = 4cm Measure its diagonal

Sketch

iii) construct a square in a circle

Activity

The pupils will do exercise on construction of squares and rectangles: Tr's collection **Remarks**

square (e)

(f) rectangle

$$\frac{\sqrt{h^2}}{h} = \sqrt{25cm^2}$$
$$\frac{h}{h} = 5cm$$

Activity

exercise 1 from Oxford primary MTC pupils Bk pages 150 – 151, and Exercise 12:30 MK BK 6 page 295 fountain pg 157

Remarks

LESSON 11

Application of Pythagoras theorem		
Solve problems using Pythagoras theorem		
(i) The flower bed measures 12m by 9cm		
Work out the length of its diagonal		
12 m ² + 0 m ² - 11	2	
	Application of Pythagoras theorem Solve problems using Pythagoras theorem (i) The flower bed measures 12m by 90 Work out the length of its diagonal	

(c) Find area of PQS

(i)

 $= 10 \, \text{cm}$

(d) Work out perimeter P = QP + PS + QS = 13cm + 13cm + 10cm $\underline{P} = 36 cm$

Activity

Pupils will do exercise 12:34 page 300 MK pupils BK 6 pages 299 - 300

Remarks

Subtopic:

Content:

LESSON 12

Angle properties Acute, obtuse, reflex, straight, right and centre angles Complementary

Example:

Describe the angles below

Angle	Description	Reason
50^{0}	Acute angle	It is $< 90^{\circ} > 0$
1240	Obtuse angle	It is $> 90^{\circ} < 180^{\circ}$
1800	Straight angle	It is a straight line
280^{0}	Reflex angle	$> 180^{\circ}$ but $< 360^{\circ}$
3600	Centre angle	Forms full circle

(a) Find the value of x

4f + 60 = 180(angles on a straight line add up to 180°) 4f + 60 = 1804f = 60 - 60 = 180 - 604f = 1204f = 1204 4 $f = 30^{\circ}$ If $2y + 20^{\circ}$, $y + 80^{\circ}$ and 2y are supplementary $\angle s$ (ii) Find v $2y + 200 + y + 800 + 2y = 180^{\circ}$ $2y + y + 2y + 20 + 80 = 180^{\circ}$ $5y + 100 = 180^{\circ}$ 5y + 100 - 100 = 180 - 100<u>5y</u> 80 5 5 <u>y = 16° </u> (iii) Interior angles of a triangle add up to 180° Find the unknown (a) (b) 50 2x4p р $2x + 50^{\circ} + 90^{\circ} = 180^{\circ}$ If 4p, 300 and p are angles in a (Int \angle s add up to 180⁰) triangle. $2x + 140^{\circ} = 180^{\circ}$ Find the value of the unknown 2x + 140 - 140 = 180 - 140p + 4p + 30 = 18005p + 300 = 18002x = 402 2 5p + 30 - 30 = 180 - 30 $X = 20^{\circ}$ <u>5p</u> = 150 5 5 $P = 30^{\circ}$

What is f

 60°

4f

Activity

Exercise 13:12 from page 224 of MK BK 7. page 224 . page 287 from MK BK Exercise 28:18 New Mk 156 Fountain pg 147 Remarks

LESSON 14

Subtopic: Content: Examples Angles formed by the transverse The co-interior angles and co – exterior angles Find the unknown angles

2

2x + 202x $5y + 100 = 180^{\circ}$ $2x + 80 = 180^{\circ}$ $2x + 2x + 20 = 180^{\circ}$ 5y + 100 - 100 = 180 -(co-int \angle s add to 180 (co-int $\angle = 180$) 2x + 80 - 80 = 180 - 804x + 20 = 180100 4x + 20 - 20 = 180 - 205y = 802x = 1005 4x = 1600

> 4 $X = 40^{\circ}$

Activity

 $X = 50^{\circ}$

2

Exercise 29: 4 and 29: 5 of pages 308/9 MK BK 6 pages 308 and 309.

4

Remarks

Ref: Mk old edition pg 267-273

LESSON 15

Subtopic:	Alternate interior angles	
Content: -	Alternate interior angles	
	- Alternate exterior $\angle s$	
	(ARE EQUAL ANGLES	5)

Examples: Work out the unknown 120^{0} 5p 100^{0} 3p 5p = 10003p = 120(Alt. int \angle s are equal) (Alternate ext \angle s are =) <u>3p</u> 3 $5p = 10^{\circ}$ $= 120^{\circ}$ 3 $P = 40^{\circ}$ Subtopic: Corresponding angles Content: Vertically opposite angles corresponding angles Find the unknown if the given angles are vertically Examples (i) opposites (a) (b) 70° 2y 130° $2y = 70^{\circ}$ $y = 130^{\circ}$ (vertically opp $\angle s$) (vert . opp \angle s) $\underline{2y} = \underline{70}^{35}$ 2 $\frac{2}{1}$ $y = 35^{\circ}$ Find the missing \angle s below (ii) $a = 70^{\circ}$ (vert opp) 70^{0} $t = 70^{\circ}$ (corresponding \angle s)

5v

 100^{0}

5

 $Y = 16^{\circ}$

$$\begin{array}{ccc} \underline{m} & \underline{y} \\ \hline 140^{0} & t \end{array} \qquad \qquad a = m \ (corresponding \angle s) \\ \therefore & m = 70^{0} \\ \underline{Y} = 140^{0} \ (ver \ opp \angle s) \end{array}$$

Activity

Pupils will do exercise 24:4 and 29:5 pages pg 267-273 **Remarks**

LESSON 15

Subtopic: Content:	Equal angles - Base angles of - 2 interior angle	Isosceles e = 1 exter	triangle rior angle
Example:	$\overbrace{\begin{array}{c} (i) \\ 2x \\ 60^{0} \end{array}}^{(i)}$	(ii)	X 70 ⁰
2x = (2 bas) $2x$ 2 2 2 2 2	60 $e \angle s \text{ of Isosceles } \Delta \text{ are} =)$ $= 60^{\circ}$ 2 $C = 30^{\circ}$		$\begin{array}{r} x + 70 + 70 = 180^{0} \\ x + 140^{0} = 180^{0} \\ x + 140 - 140 = 180 \\ \underline{x} = 40^{0} \end{array}$
_	70 ⁰ 80 ⁰ W	_	$80 + 70 = w$ (2 int $\angle = 1$ ext + opp \angle) $150^{0} = w$ $W = 150^{0}$
Activity Old Mk pg 167 Remarks	7-273		

LESSON 16		
Subtopic:	Exterior	and Interior angles
Content:	-	Find the exterior angles of regular polygon
	-	Interior angles of regular polygon

Example:	(a)	Find the exterior \angle is 150 ⁰
		Ext $\angle +$ Int $\angle = 180^{\circ}$
		Let ext \angle be y
		$Y + 150^0 = 180^0$
		Y + 150 - 150 = 180 - 150
		$Y = 30^{0}$
	(b)	Work out the exterior angle of a regular decagon
		Decagon = 10 sides
		$Ext \angle = 360 = 360 = 36^{\circ}$
		Sides 10
		\therefore Ext $\angle = 36^{\circ}$
Activity		
Exterior		Interior Number of sides

Exterior	Interior	Number of sides
X	120^{0}	
		5 sides
720		5 sides
	140^{0}	9 sides

(b) A regular polygon has 12 sides find its

(i) exterior angles

(ii) interior angles

Remarks

Tr's collection

LESSON 17

Subtopic:	Interior angle sum	
Content:	- Find interior angle sum of regular polygon	
	- problems involving interior angle sum	
Examples:	Find the interior angle sum of a regular hexagon	
-	Intangle sum = $(n-2) \times 180$	
	$= (6-2) \times 180^{\circ}$	
	4 x 180	
	Int angle sum $= 720^{\circ}$	

(ii) The interior angle of a regular polygon is five times the Exterior angle

(a) Find the ext
$$\angle$$
 (b) Find the int \angle
Let ext $\angle = x$ int $\angle = 5x$
Ext int $5x = 5x X$
 $X = 5x$ $x = 300$
 $6 = 6$
 $X = 30^{0}$

(c) Find its interior angle sum Int angle sum = (n - 2) 180 360 = 360 = 12 sides N = 1 ext \angle 30 $1 \text{ ext} \angle \text{ sum} = (12 - 2) \ 180^{\circ}$ $10 \times 180^{\circ}$ $= 1800^{\circ}$

Activity

If the interior angle is thrice the exterior angle of a regular polygon.

- Find the exterior angle (a)
- How many sides has it (b)
- Find its Int angle sum (c)

Remarks

Ref: tr's collection

SYMMETRY

LESSON 1

Subtopic: Content: Examples: Symmetry Lines of folding symmetry of plane shapes How many lines of symmetry has (i)

Activity

Pupils will draw and count the lines of folding symmetry of shapes given by the teacher. Remarks

LESSON 2

Drawing nets of solids Subtopic: Nets of soild objects Content: Example:

Modes of solids

Name the solid whose net is drawn

(b) Find its interior sun

8cm

How many sides has the polygon and name it. (c) Name the parts B

19.

ĹΤ

А

С

(i)	Line TP
(ii)	line AB
(iii)	Line XY
(iv)	curve C
(v)	shaded pa

shaded part

UNIT 7 INTEGERS UNIT / TOPIC LESSON 1 Subtopic: Integers on a number line Content: Describe integers -Positive (i)

Subtopic: Represent Integers using arrow.

Content:-Name arrows on number lines-Draw arrows to represent integersExamples:(a)Which integers is represented by each arrow?

Activity

The pupils will do exercise 9:4 on page 196 from A New MK BK 6 page 196.

Remarks

LESSON 2

Subtopic:	Order	ing integ	ers		
Content:	-	Comp Arran	pare integers ge in ascending order		
	-	Arran	ge in descending order		
Examples:	(i)	Use >	, < or = to compare		
-		(a)	+2 $-2+2$ > -2	(b)	⁻ 20 ⁺ 11 <u>-</u> 20 < ⁺ 11
		(c)	0 4 0 > - 4	(d)	$^{-100} - 0$

Example:

(ii) Arrange $\{-2, 3, -3, 2\}$ in ascending order 1 2 3 4 |* 1* -3 -4 -2 -1 0 +Ż +3 Order: $\{-3, -2, 2, 2, \dots \}$ 3} 6} in descending order (iii) Put {-12, -20, -34, 0,

N.B Integers on the right are greater and all those on the left one less.

Activity

The pupils will do exercise 9:7 from page 197 from A New MK pupils' BK 6 page 197.

Remarks

LESSON 3 Subtopic: Content:	Operat Additio	ion on integers on of
		(i) Positive integers
		(ii) Positive and negative integers
		(iii) Negative and negative integers
	On a n	umber line
	-	Write sentences of addition on number lines.
Examples:	(a)	Add +3 + + 2
	I	+3
-2	-1	0 $+1$ $+2$ $+3$ $+4$ $+5$

 $\therefore +3++2=+5$

+5

Remarks

LESSON 4

For more lesson notes, visit www.freshteacheruganda.com

+6

1.	Evalu	ate					
	(a)	8 3	(b)	- 9 - 6			
	(c)	Decrease +7 by	/ - 7				
2.	Work	out:					
	(a)	- 3 x 0	(b)	0.8 x (⁻ 4)			
3.	Use a	number line to ad	ld:				
	(a)	⁻ 6 + 4	(b)	4 - + 7			
	(c)	Find the additi	ve invers	e of ⁺ 6.			
	(d)	Add: ⁻ 6 + 6	(e)	$^{+}14 - 14$			
4.	Work	out:					
	(a)	+8 8	(b)	-10 - + 15	(c)	+9 ÷ +3	
	(d)	-6 x +2	(e)	-12 ÷ -3			
5	That	managenetisma of ica	fall from	20C hu 50C Ein	d the tom	nonoting of ion	

The temperature of ice fell from -3°C by 5°C. Find the temperature of ice.

100

- 7. Solve: 2y > 4 and give the solution set.
 - (b) Give a set of integers for which: $2x + 3 \ge 5$
 - (c) Find the set T shown below

\mathbf{X}	X	<u>*</u>	X	X	X	X	<u> </u>		
-4	-3	-2	-1	0	1	$\frac{1}{2}$	3	4	5
(d)	Repres	ent W =	= {-3, -2,	-1, 0 +1,	+2, +3, +4]	} on a nun	nber line		
8.	(a)	Solve	for X in	n ⁻3x + 5	< 8				
	(b)	Find t	the sum	of ⁻ 2 and	12.				
	(c)	Temp	erature o	on top of	a mounta	ain is 30° a	at noon. I	t drops b	y -10 ⁰
		What	is the ne	ew tempe	erature?				
	(d)	Find 1	r if (-2) +	$+ \mathbf{r} = 0$					
9.	(a)	If X =	= {even r	numbers	between	10 and 20	}.		
		Find	the solut	tion set c	of $10 < x < 0$	< 20.			
	(b)	Jie wa	alked 4 r	netres. H	le remem	bered he h	ad left so	ome mone	ey
		behin	d and ma	ade 7 ste	ps back to	o pick the	money. S	Show it of	n a
		numb	er line.						
	(c)	I thin	k of a nu	mber, m	ultiply it	by 3 and s	subtract 4	from it,	the
		answe	er is grea	ter than	14. Find t	the numbe	er.		
10.	Simpli	fy: <u>2</u> x	6			(b)	-2 (-y	+ 1)	
		3							
		(c)	Solve	$e: 3 \ge 3x$	<u>></u> 9	(d)	<u>-</u> 4p <u><</u>	-8	
11.	Add:	(a)	+20 +	8	(b)	-8 + -	20 (c)	+8 + +	60
12.	Arrang	ge the fo	llowing	integers.		_			
	(a)	{-2, 4	, 8, 3, 1,	0 in as	cending of	order			
	(b)	{+10,	-15, 3, 9	, 0, ⁻ 1} ii	n descend	ing order			
	(c)	Use >	$e_{r}, < \text{or} = 1$	to compa	are.		-		
		(1)	-20		+8	(11)	-2		10
		(111)	+4		- 400	(1V)	0		"1
13.	n - ⁻ 3 :	= 3 find	the valu	e of n.					
	(b)	What	is the su	ım of ⁻3y	and +7y?				
	(c)	Work	out y: If	$f y = {pri}$	ime numt	pers less th	nan 10}		
14.	Study	the date	below:						
	(-2, +3,	+4, -2, -:	5, +2)						
	(a)	Find t	their mo	de.	(b)	Work	out their	range	
	(c)	What	is the m	edian?					
15	A mot a	limbaa	nole of f	0 m h a	h It alima	a 10m a	d alidaa 7	m down	Whee

15. A rat climbs a pole of 50 m high. It climbs 10m and slides 2m down. What distance from the ground level will it be after sliding 6 times?

UNIT 10 ALGEBRA							
LESSON 1							
Sub-topic:	Algeb	raic Expressions					
Content:	: Writing phrases for Algebraic expressions						
	(i)	adding	(ii)	subtracting			
	(iii)	multiplying	(iv)	dividing			
Examples:	(1)	Add b to $a = a + b$					
-	(2)	Add 5 to $n = n + 5$					
	(3)	Subtract b from $a = a - b$					
	(4)	Subtract 5 from $n = n - 5$					
	(5)	Multiply b by	a = ab				
	(6)	Multiply n by	5 = 5n				
	(7)	Divide b by a	= b				
		2	a				
	(8)	Divide n by 5	= n				
	. /	5	5				
Activity							

Activity

Pupils will do the following exercises from A New Mk Book 6 pages 374 and 375 14:1, 14:2, 14:3, 14:4 and 14:5 Fountain pg 187 Remarks

LESSON 2

Subtopic:	Subst	itution
Content:	1.	Expanding Algebraic terms
	2.	Substitution
Examples:	(a)	Expand the following
		1. $2p = 2 \times p$
		2. $3p q = 3 x p x q$
		$3. \qquad 4q^2 = 4 \ge q \ge q$
		4. $(4q)^2 = 4q \times 4q$
	(b)	Substitute and find the value of the given the given state of the given state of the given state of the given state of the

- iven expressions below.
 - If p = 8, q = 6, a = 2(i) Given b = 6(2)

Find: b + 8what is pqa 6 + 8pqa = p x q x a= 14 $= 8 \times 6 \times 2$ = 96

Given
$$b = 6$$
, $c = -3$, $a = 2$
Find $\underline{bc} = \underline{b \ x \ c}$
 $a = \frac{3}{\underline{6} \ x^{-3}} = \frac{3 \ x^{-3}}{\underline{2}^{1}}$

Activity:

3.

Pupils do exercises 14:6 and 14:7 from A New Mk Book 6 on page 376 New MK 180-181

Remarks

LESSON 3 Sub topic: Content: Examples:	Like te Collec 1.	erms ting and simplifyin Simplify: r + r + r + r = 3r	g the like term 2.	s Simplify: $3x + 4x + 2x$ 7x + 2x <u>$9x$</u>	2x
	3.	3h x 3 3 x h x 3 = 9h	4.	$3x2 x 4x^{2} = 3 x 4 x x3 x 3 = 12x^{4}$	
	5.	$\begin{array}{c} x+y+2x+4y\\ X+2x+y+4y\\ \underline{3x+5y}\end{array}$	6.	$3x + 6y - x - 2y$ $3x - x + 6y - 2y$ $\underline{2x + 4y}$	
b + 4	a+b	2b	a + b + b + 4 $a + a + a + b$	+a + 3b + a + 2b + b + 3b + 2b + 4	
					102

3a + 7b + 4

а

3b

Activity

Pupils will do the following exercises 14:8, 14:9, 14:10, and 14:11 on pages 377, 378, 379 from A New MK Book 6. New Mk 182-183

b

Remarks

LESSON 4						
Subtopic:	Algebra involving brackets					
Content:	Removing brackets by:					
	1. Multiplying every term inside the brackets by the factor outside it.					
	2. Substituting and finding the values of the unknowns.					
	3. Changing positive and negative signs involving brackets.					
	4. Solving and simplifying equations					
Examples:	1. Remove the brackets 2. If $b = 1$ and $c = -3$ $2(a+3) = (2 x a) + (2 x 3)$ find: $3b - c$ $=$ $2a + 6$ $= (3 x b) - c$					
	$= (3 \times 1) - 3$ = 3 - 3 = 0					
	3. $-(2x - 2y)$ 4. $\frac{1}{2}(8a + 4b)$ $-2x(-2y)$ $= (\frac{1}{2}x + 2y)$ $= \frac{4a + 2b}{4a + 2b}$					
	5. $3 (x + 3) - 2 (x - 1)$ 3x + 9 - 2x + 2 $3x - 2x + 9 + 2 = \frac{x + 11}{2}$					
Activity:						
Pupils will do t	the following exercises 14:12, 14:13, 14:14, 14:15, 14:16 and					

14:17 from MK MTC BK 6 pages 380, 387 and 382. Fountain pg 188-189

Remarks:

LESSON 5

Subtopic:Forming equationsContent:Forming and solving equations involving addition.Examples:1.p + 4 = 12P + 4 - 4 = 12 - 4P = 8

2. Amanda had some pineapples. She bought 6 more pineapples altogether. How many pineapples had she before?

Let the pineapples be p

Before	more	total
Р	6	11

P + 6 = 11 P + 6 - 6 = 11 - 6P = 5. She had 5 pineapples

Finding the unknown.

Forming and solving equations involving subtraction.

Examples: 1. Find the value of:

b-3=8 b-3+3=8+3 $\therefore b=11$

Activity:

Pupils will do the following exercises: 14:23 and 14:24 on page 386 from A New Mk MTC book 6 New Mk 184-185

Remarks.

LESSON 6

Subtopic:	Findi	ng the unkr	nown			
Content:	Form	ing and sol	ving	equa	ation	s involving multiplication
Examples:	1.	Solve:	2x	=	8	
-			$\frac{2x}{2}$	=	<u>8</u> 4	
			2		2	
			Х	= 4	4	

- 2. 4 buses carried y passengers each. Altogether they carried 320 passengers. How many passengers did each bus carry? Passengers in 4 buses = (4 buses Xy passengers) 4 x y = 320 passengers $\frac{4y}{4} = \frac{320}{4}$ $\frac{Y = 80}{Each bus carried 80 passengers.$
- Content: Collect like terms and simplify. Examples: 1. 3g + g + 2g = 306g = 306 = 6g = 5

Activity:

Pupils will do the following exercises 14: 27 and 14: 28 on page 388 from A New Mk book 6.

MK new edition 186

LESSON 7 Subtopic:

forming equations Musa is twice as old as Anna. Their total age is 18 years. How old is Anna? Let Anna's age be x.

Anna	Musa	Total
X years	2x years	18 years

X + 2x	= 18	
3x =	18	
3	3	
X = 6		

Anna's age is 6 years.

Activity:

Pupils will do the following exercises 14: 27 and 14: 28 on page 390 from A New Mk book 6. MK new edition 186 **Remarks.**

LESSON 8

Subtopic:	Findi	Finding the unknown.		
Content:	Equat	Equations involving fractions		
Examples:	(i)	$\underline{a} = 4$		
		3		
		$\underline{a} = \underline{4}$		
		$\overline{3}$ $\overline{1}$		
	3 x	$\underline{a} = \underline{4} \times 3$		
		3 1		
		<u>a</u> = 12		
	2	Find the number of or		

- 2. Find the number of oranges that can be divided among 5 boys, so that each gets 6 oranges. Let the number of oranges be p So p = 65 $x p = \frac{6}{5} x 5$ 5P = 30P = 30 oranges
- 3. Solve: 5p + 2 = 124

$$5p + 2 - 2 = 12 - 2$$

$$4 \quad x \quad \frac{5p}{4} = 10 \quad x \quad 4$$

$$\frac{5p}{5} = \frac{40}{5}$$

$$\underline{P = 8}$$

Activity:

Pupils will do exercises 14 : 29 and 14:30 on page 389 from A New Mk MTC book 6. Old MK 390 New Mk 187 **Remarks.**

LESSON 9

Subtopic:	Application of equations			
Content:	Forming and solving equations using a perimeter	Forming and solving equations using a perimeter		
Example	1. The perimeter of a rectangle is 24cm. Find X.	1. The perimeter of a rectangle is 24cm. Find X.		
	L + W + L + W = perimeter			
	X + 4 + x + 4 = 24 cm			
\vdash	X + x + 4 + 4 = 24 cm			
	4cm $2x + 8 - 8 = 24 - 8$			
	$\underline{\qquad} \underline{\qquad} \underline{\qquad} \underline{\qquad} \underline{\qquad} \underline{\qquad} \underline{\qquad} \underline{\qquad} $			
	X 2 2			
	$\underline{\mathbf{X}} = 8 \mathbf{cm}$			
Activity:				
Dunile will	do avarcisa 14:32 on page 305 306 from A New Mk MTC			

Pupils will do exercise 14: 32 on page 395-396 from A New Mk MTC New Mk 191 **Remarks.**

LESSON 10

Subtopic:	Solvi	Solving equations involving brackets		
Content:	Removing the brackets			
Examples	1.	Solve:	3(y+4) = 21	
			(3 xy) + ($3 \ge 4 = 21$
			3y + 12	= 21

$$3y + 12 - 12 = 21 - 12$$

$$3y = 9$$

$$3 - 3$$

$$Y = 3$$

2. Solve: $5(y + 1) - 3(y - 1) = 14$
 $(5 \times y) + (5 \times 1) - (3 \times y) - (-3 \times 1) = 14$
 $(5y + 5) - (3y + 3) = 14$
 $5y + 5 - 3y + 3 = 14$
 $5y - 3y + 5 + 3 = 14$
 $2y + 8 = 14$
 $2y + 8 - 8 = 14 - 8$
 $\frac{2y}{2} = \frac{6}{2}$

Activity:

Pupils will do exercises 14:33 and 14:34 on pages 392 and 393 from A New Mk Bk 6. **Remarks.**

 $\mathbf{Y} = \mathbf{3}$

LESSON 11

Activity:

Pupils will do exercise 14:37 on page 394 from A New Mk book 6. New Mk 190-191 **Remarks.**

REVISION WORK ON ALGEBRA

1.	(i)	Add: m to 6		(ii)	subtract 4 from b
	(iii)	multiply 2 by t		(iv)	Divide x by 7
2.	If $p = 8$	8, r = 4, q = 6, c =	3. Find the	e value o	of
	(a)	<u>p + r</u>	(b)	pq	
		qc		rc	

- 3. Simplify: (a) 3x + 6y x 2y (b) $2x^3 x 2x^3$ 4. Remove the brackets
 - (a) 4(1-3b) (b) +3x(y-1)
 - (c) 4(x+3) + 2(x+3)
- 5. Odoi made some stools, he was given 5 more stools and got 13 stools altogether. Find the number of stools Odoi made.
- 6. Akiiki harvested some sacks of potatoes, she sold 15 of them and kept 2 for her family. Find the number of sacks she harvested.
- 7. (a) Solve for m: 13m = 260
 - (b) I think of a number, multiply it by 9. If the result is 108. What number did I think of?
- 8. A father is 3 times as old as his daughter. Their total age is 48 years. How old is the daughter?
- 9. The perimeter of the square of side p cm is 28cm, Find P.

Remarks _